Search results
Results from the WOW.Com Content Network
The first locomotive with a phase converter (only for demonstration purposes) The Kandó phase converter (1933) The "Kandó" locomotive, the first locomotive using a phase converter system. At the beginning of the 20th century, there were two main principles of electric railway traction current systems: DC system; 16⅔ Hz single phase system
Wiring schematic for a simplified bipolar-field Gramme-ring single-phase–to–direct-current rotary converter. (In actual use, the converter is drum-wound and uses a multipolar field.) [2] Wiring schematic for a simplified two-phase–to–direct-current rotary converter, with the second phase connected at right angles to the first [3] Wiring schematic for a simplified three-phase–to ...
An American Rotary Phase Converter with a Transformer. A phase converter is a device that converts electric power provided as single phase to multiple phase or vice versa. The majority of phase converters are used to produce three-phase electric power from a single-phase source, thus allowing the operation of three-phase equipment at a site that only has single-phase electrical service.
For example, balanced two-phase power can be obtained from a three-phase network by using two specially constructed transformers, with taps at 50% and 86.6% of the primary voltage. This Scott T connection produces a true two-phase system with 90° time difference between the phases.
Transformation of three phase electrical quantities to two phase quantities is a usual practice to simplify analysis of three phase electrical circuits. Polyphase a.c machines can be represented by an equivalent two phase model provided the rotating polyphases winding in rotor and the stationary polyphase windings in stator can be expressed in a fictitious two axes coils.
Three-phase transformer with four-wire output for 208Y/120 volt service: one wire for neutral, others for A, B and C phases. Three-phase electric power (abbreviated 3ϕ [1]) is a common type of alternating current (AC) used in electricity generation, transmission, and distribution. [2]
The wound rotor is a cylindrical core made of steel lamination with slots to hold the wires for its 3-phase windings which are evenly spaced at 120 electrical degrees apart and connected in a 'Y' configuration. [4] The rotor winding terminals are brought out and attached to the three slips rings with brushes, on the shaft of the rotor. [5]
A typical one-line diagram with annotated power flows. Red boxes represent circuit breakers, grey lines represent three-phase bus and interconnecting conductors, the orange circle represents an electric generator, the green spiral is an inductor, and the three overlapping blue circles represent a double-wound transformer with a tertiary winding.