enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Frequency response - Wikipedia

    en.wikipedia.org/wiki/Frequency_response

    Magnitude response of a low pass filter with 6 dB per octave or 20 dB per decade roll-off. Measuring the frequency response typically involves exciting the system with an input signal and measuring the resulting output signal, calculating the frequency spectra of the two signals (for example, using the fast Fourier transform for discrete signals), and comparing the spectra to isolate the ...

  3. Bode plot - Wikipedia

    en.wikipedia.org/wiki/Bode_plot

    It is usually a combination of a Bode magnitude plot, expressing the magnitude (usually in decibels) of the frequency response, and a Bode phase plot, expressing the phase shift. As originally conceived by Hendrik Wade Bode in the 1930s, the plot is an asymptotic approximation of the frequency response, using straight line segments .

  4. Phase response curve - Wikipedia

    en.wikipedia.org/wiki/Phase_response_curve

    A phase response curve (PRC) illustrates the transient change (phase response) in the cycle period of an oscillation induced by a perturbation as a function of the phase at which it is received. PRCs are used in various fields; examples of biological oscillations are the heartbeat, circadian rhythms , and the regular, repetitive firing observed ...

  5. Filter design - Wikipedia

    en.wikipedia.org/wiki/Filter_design

    An example is for high-resolution audio in which the frequency response (magnitude and phase) for steady state signals (sum of sinusoids) is the primary filter requirement, while an unconstrained impulse response may cause unexpected degradation due to time spreading of transient signals. [2] [3]

  6. Finite impulse response - Wikipedia

    en.wikipedia.org/wiki/Finite_impulse_response

    The magnitude plot indicates that the moving-average filter passes low frequencies with a gain near 1 and attenuates high frequencies, and is thus a crude low-pass filter. The phase plot is linear except for discontinuities at the two frequencies where the magnitude goes to zero. The size of the discontinuities is π, representing a sign reversal.

  7. Phase margin - Wikipedia

    en.wikipedia.org/wiki/Phase_margin

    Phase margin and gain margin are two measures of stability for a feedback control system. They indicate how much the gain or the phase of the system can vary before it becomes unstable. Phase margin is the difference (expressed as a positive number) between 180° and the phase shift where the magnitude of the loop transfer function is 0 dB.

  8. Frequency domain - Wikipedia

    en.wikipedia.org/wiki/Frequency_domain

    A complex valued frequency-domain representation consists of both the magnitude and the phase of a set of sinusoids (or other basis waveforms) at the frequency components of the signal. Although it is common to refer to the magnitude portion (the real valued frequency-domain) as the frequency response of a signal, the phase portion is required ...

  9. All-pass filter - Wikipedia

    en.wikipedia.org/wiki/All-pass_filter

    An all-pass filter is a signal processing filter that passes all frequencies equally in gain, but changes the phase relationship among various frequencies. Most types of filter reduce the amplitude (i.e. the magnitude) of the signal applied to it for some values of frequency, whereas the all-pass filter allows all frequencies through without changes in level.