Search results
Results from the WOW.Com Content Network
Special topics such as superconductivity or plasma physics are not mentioned. Breaking with tradition, Griffiths did not give solutions to all the odd-numbered questions in the book. Another unique feature of the first edition is the informal, even emotional, tone. The author sometimes referred to the reader directly.
David Jeffrey Griffiths (born December 5, 1942) is an American physicist and educator. He was on the faculty of Reed College from 1978 through 2009, becoming the Howard Vollum Professor of Science before his retirement. He wrote three highly regarded textbooks for undergraduate physics students.
Introduction to Elementary Particles, by David Griffiths, is an introductory textbook that describes an accessible "coherent and unified theoretical structure" of particle physics, appropriate for advanced undergraduate physics students. [1] It was originally published in 1987, and the second revised and enlarged edition was published 2008.
The book was reviewed by John R. Taylor, [2] among others. [3] [4] It has also been recommended in other, more advanced, textbooks on the subject.[5] [6]According to physicists Yoni Kahn of Princeton University and Adam Anderson of the Fermi National Accelerator Laboratory, Griffiths' Introduction to Quantum Mechanics covers all materials needed for questions on quantum mechanics and atomic ...
For undergraduates, there are several widely used textbooks, including David Griffiths' Introduction to Electrodynamics and Electricity and Magnetism by Edward Purcell and David Morin. [5] Also at an undergraduate level, Richard Feynman 's classic Lectures on Physics is available online to read for free.
Electricity and Magnetism is a standard textbook in electromagnetism originally written by Nobel laureate Edward Mills Purcell in 1963. [1] Along with David Griffiths' Introduction to Electrodynamics, this book is one of the most widely adopted undergraduate textbooks in electromagnetism. [2]
Position vectors r and r′ used in the calculation. The starting point is Maxwell's equations in the potential formulation using the Lorenz gauge: =, = where φ(r, t) is the electric potential and A(r, t) is the magnetic vector potential, for an arbitrary source of charge density ρ(r, t) and current density J(r, t), and is the D'Alembert operator. [2]
Jefimenko says, "...neither Maxwell's equations nor their solutions indicate an existence of causal links between electric and magnetic fields. Therefore, we must conclude that an electromagnetic field is a dual entity always having an electric and a magnetic component simultaneously created by their common sources: time-variable electric ...