Search results
Results from the WOW.Com Content Network
The channel efficiency, also known as bandwidth utilization efficiency, is the percentage of the net bit rate (in bit/s) of a digital communication channel that goes to the actually achieved throughput. For example, if the throughput is 70 Mbit/s in a 100 Mbit/s Ethernet connection, the channel efficiency is 70%.
Throughput is controlled by available bandwidth, as well as the available signal-to-noise ratio and hardware limitations. Throughput for the purpose of this article will be understood to be measured from the arrival of the first bit of data at the receiver, to decouple the concept of throughput from the concept of latency.
People are often concerned about measuring the maximum data throughput in bits per second of a communications link or network access. A typical method of performing a measurement is to transfer a 'large' file from one system to another system and measure the time required to complete the transfer or copy of the file.
The network throughput of a connection with flow control, for example a TCP connection, with a certain window size (buffer size), can be expressed as: Network throughput ≈ Window size / roundtrip time. In case of only one physical link between the sending and transmitting nodes, this corresponds to:
Another factor reducing throughput is deliberate policy decisions made by Internet service providers that are made for contractual, risk management, aggregation saturation, or marketing reasons. Examples are rate limiting, bandwidth throttling, and the assignment of IP addresses to groups. These practices tend to minimize the throughput ...
The consumed bandwidth in bit/s, corresponds to achieved throughput or goodput, i.e., the average rate of successful data transfer through a communication path.The consumed bandwidth can be affected by technologies such as bandwidth shaping, bandwidth management, bandwidth throttling, bandwidth cap, bandwidth allocation (for example bandwidth allocation protocol and dynamic bandwidth ...
Examples are Frame Relay, Asynchronous Transfer Mode (ATM) and Multiprotocol Label Switching (MPLS) (a technique between layer 2 and 3). Despite these network technologies remaining in use today, this kind of network lost attention after the advent of Ethernet networks. Today Ethernet is, by far, the most popular layer 2 technology.
iperf, Iperf, or iPerf, is a tool for network performance measurement and tuning. It is a cross-platform tool that can produce standardized performance measurements for any network. iperf has client and server functionality, and can create data streams to measure the throughput between the two ends in one or both directions. [2]