Search results
Results from the WOW.Com Content Network
Reaction scheme of the photobromination of the methyl group of toluene Photobromination with elemental bromine proceeds analogous to photochlorination also via a radical mechanism. In the presence of oxygen, the hydrogen bromide formed is partly oxidised back to bromine, resulting in an increased yield.
The relative rates at which different halogens react vary considerably: [citation needed] fluorine (108) > chlorine (1) > bromine (7 × 10 −11) > iodine (2 × 10 −22).. Radical fluorination with the pure element is difficult to control and highly exothermic; care must be taken to prevent an explosion or a runaway reaction.
Benzyl chloride is prepared industrially by the gas-phase photochemical reaction of toluene with chlorine: [3] C 6 H 5 CH 3 + Cl 2 → C 6 H 5 CH 2 Cl + HCl. In this way, approximately 100,000 tonnes are produced annually. The reaction proceeds by the free radical process, involving the intermediacy of free chlorine atoms. [4]
Industrially, the diazonium method is reserved for 3-chlorotoluene. The industrial route to 2- and 4-chlorotoluene entails direct reaction of toluene with chlorine. The more valuable 4-chlorotoluene is separated from 2-chlorotoluene by distillation. Distillation cannot be applied to separating 3-chlorotoluene from 4-chlorotoluene. [2]
4 HCl + 2 CH 2 =CH 2 + O 2 → 2 Cl−CH 2 −CH 2 −Cl + 2 H 2 O Structure of a bromonium ion. The addition of halogens to alkenes proceeds via intermediate halonium ions. In special cases, such intermediates have been isolated. [5] Bromination is more selective than chlorination because the reaction is less exothermic.
The reaction mechanism for chlorination of benzene is the same as bromination of benzene. Iron(III) bromide and iron(III) chloride become inactivated if they react with water, including moisture in the air. Therefore, they are generated by adding iron filings to bromine or chlorine. Here is the mechanism of this reaction:
Toluene (/ ˈ t ɒ l. j u iː n /), also known as toluol (/ ˈ t ɒ l. j u. ɒ l , - ɔː l , - oʊ l / ), is a substituted aromatic hydrocarbon [ 15 ] with the chemical formula C 6 H 5 CH 3 , often abbreviated as PhCH 3 , where Ph stands for the phenyl group.
A hydrohalogenation reaction is the electrophilic addition of hydrogen halides like hydrogen chloride or hydrogen bromide to alkenes to yield the corresponding haloalkanes. [ 1 ] [ 2 ] [ 3 ] If the two carbon atoms at the double bond are linked to a different number of hydrogen atoms, the halogen is found preferentially at the carbon with fewer ...