Search results
Results from the WOW.Com Content Network
The log-normal distribution has also been associated with other names, such as McAlister, Gibrat and Cobb–Douglas. [4] A log-normal process is the statistical realization of the multiplicative product of many independent random variables, each of which is positive.
The log-logistic distribution; The log-metalog distribution, which is highly shape-flexile, has simple closed forms, can be parameterized with data using linear least squares, and subsumes the log-logistic distribution as a special case. The log-normal distribution, describing variables which can be modelled as the product of many small ...
As assumed above, if the data were generated by (;) , then under certain conditions, it can also be shown that the maximum likelihood estimator converges in distribution to a normal distribution. It is √ n -consistent and asymptotically efficient, meaning that it reaches the Cramér–Rao bound .
A spreading Gaussian distribution of distinct primes illustrating the Erdos-Kac theorem. Around 12.6% of 10,000 digit numbers are constructed from 10 distinct prime numbers and around 68% are constructed from between 7 and 13 primes. A hollow sphere the size of the planet Earth filled with fine sand would have around 10 33 grains.
Tests for the (two-parameter) log-normal distribution can be implemented by transforming the data using a logarithm and using the above test for normality. Details for the required modifications to the test statistic and for the critical values for the normal distribution and the exponential distribution have been published by Pearson & Hartley ...
The log-likelihood is also particularly useful for exponential families of distributions, which include many of the common parametric probability distributions. The probability distribution function (and thus likelihood function) for exponential families contain products of factors involving exponentiation. The logarithm of such a function is a ...
The log-normal distribution, however, needs a numeric approximation. As the log-logistic distribution, which can be solved analytically, is similar to the log-normal distribution, it can be used instead. The blue picture illustrates an example of fitting the log-logistic distribution to ranked maximum one-day October rainfalls and it shows the ...
In probability theory and computer science, a log probability is simply a logarithm of a probability. [1] The use of log probabilities means representing probabilities on a logarithmic scale ( − ∞ , 0 ] {\displaystyle (-\infty ,0]} , instead of the standard [ 0 , 1 ] {\displaystyle [0,1]} unit interval .