Search results
Results from the WOW.Com Content Network
The graph of a function with a horizontal (y = 0), vertical (x = 0), and oblique asymptote (purple line, given by y = 2x) A curve intersecting an asymptote infinitely many times In analytic geometry , an asymptote ( / ˈ æ s ɪ m p t oʊ t / ) of a curve is a line such that the distance between the curve and the line approaches zero as one or ...
The word horizontal is derived from the Latin horizon, which derives from the Greek ὁρῐ́ζων, meaning 'separating' or 'marking a boundary'. [2] The word vertical is derived from the late Latin verticalis, which is from the same root as vertex, meaning 'highest point' or more literally the 'turning point' such as in a whirlpool.
Horizontal and vertical lines. In the general equation of a line, ax + by + c = 0, a and b cannot both be zero unless c is also zero, in which case the equation does not define a line. If a = 0 and b ≠ 0, the line is horizontal and has equation y = -c/b.
Another use of line in graphics is the ability to help suggest a tone or feeling in a work. Vertical lines can be used to create a sense of strength or stability. An example of this could be a row of trees in a picture creating a series of vertical lines. Horizontal lines can be used to create a feeling of calm, peace or passiveness.
The examples below show the named parallels (as red lines) on the commonly used Mercator projection and the Transverse Mercator projection. On the former the parallels are horizontal and the meridians are vertical, whereas on the latter there is no exact relationship of parallels and meridians with horizontal and vertical: both are complicated ...
When filming or photographing people, it is common to line the body up to a vertical line and the person's eyes to a horizontal line. If filming a moving subject, the same pattern is often followed, with the majority of the extra room being in front of the person (the way they are moving). [ 6 ]
Slope illustrated for y = (3/2)x − 1.Click on to enlarge Slope of a line in coordinates system, from f(x) = −12x + 2 to f(x) = 12x + 2. The slope of a line in the plane containing the x and y axes is generally represented by the letter m, [5] and is defined as the change in the y coordinate divided by the corresponding change in the x coordinate, between two distinct points on the line.
The vertical shear displaces points to the right of the y-axis up or down, depending on the sign of m. It leaves vertical lines invariant, but tilts all other lines about the point where they meet the y-axis. Horizontal lines, in particular, get tilted by the shear angle to become lines with slope m.