enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Atomic orbital - Wikipedia

    en.wikipedia.org/wiki/Atomic_orbital

    Electron atomic and molecular orbitals. The chart of orbitals (left) is arranged by increasing energy (see Madelung rule). Atomic orbits are functions of three variables (two angles, and the distance r from the nucleus). These images are faithful to the angular component of the orbital, but not entirely representative of the orbital as a whole.

  3. Molecular orbital diagram - Wikipedia

    en.wikipedia.org/wiki/Molecular_orbital_diagram

    The three dumbbell-shaped p-orbitals have equal energy and are oriented mutually perpendicularly (or orthogonally). The p-orbitals oriented in the z-direction (p z) can overlap end-on forming a bonding (symmetrical) σ orbital and an antibonding σ* molecular orbital. In contrast to the sigma 1s MO's, the σ 2p has some non-bonding electron ...

  4. Electron configuration - Wikipedia

    en.wikipedia.org/wiki/Electron_configuration

    For many years, most such calculations relied upon the "linear combination of atomic orbitals" (LCAO) approximation, using an ever-larger and more complex basis set of atomic orbitals as the starting point. The last step in such a calculation is the assignment of electrons among the molecular orbitals according to the aufbau principle.

  5. Electron shell - Wikipedia

    en.wikipedia.org/wiki/Electron_shell

    In chemistry and atomic physics, an electron shell may be thought of as an orbit that electrons follow around an atom's nucleus.The closest shell to the nucleus is called the "1 shell" (also called the "K shell"), followed by the "2 shell" (or "L shell"), then the "3 shell" (or "M shell"), and so on further and further from the nucleus.

  6. Molecular orbital - Wikipedia

    en.wikipedia.org/wiki/Molecular_orbital

    Molecular orbitals are said to be degenerate if they have the same energy. For example, in the homonuclear diatomic molecules of the first ten elements, the molecular orbitals derived from the p x and the p y atomic orbitals result in two degenerate bonding orbitals (of low energy) and two degenerate antibonding orbitals (of high energy). [13]

  7. Ligand field theory - Wikipedia

    en.wikipedia.org/wiki/Ligand_field_theory

    In the usual analysis, the p-orbitals of the metal are used for σ bonding (and have the wrong symmetry to overlap with the ligand p or π or π * orbitals anyway), so the π interactions take place with the appropriate metal d-orbitals, i.e. d xy, d xz and d yz. These are the orbitals that are non-bonding when only σ bonding takes place.

  8. Hückel method - Wikipedia

    en.wikipedia.org/wiki/Hückel_method

    To summarize, we are assuming that: (1) the energy of an electron in an isolated C(2p z) orbital is =; (2) the energy of interaction between C(2p z) orbitals on adjacent carbons i and j (i.e., i and j are connected by a σ-bond) is =; (3) orbitals on carbons not joined in this way are assumed not to interact, so = for nonadjacent i and j; and ...

  9. Antibonding molecular orbital - Wikipedia

    en.wikipedia.org/wiki/Antibonding_molecular_orbital

    Antibonding orbitals are often labelled with an asterisk (*) on molecular orbital diagrams. In homonuclear diatomic molecules, σ* (sigma star) antibonding orbitals have no nodal planes passing through the two nuclei, like sigma bonds, and π* (pi star) orbitals have one nodal plane passing through the two nuclei, like pi bonds.