Search results
Results from the WOW.Com Content Network
Due to limited electric power the thrust is much weaker compared to chemical rockets, but electric propulsion can provide thrust for a longer time. [2] Electric propulsion was first demonstrated in the 1960s and is now a mature and widely used technology on spacecraft. American and Russian satellites have used electric propulsion for decades. [3]
Neutral gas is first ionized by electromagnetic waves and then transferred to another chamber where it is accelerated by an oscillating electric and magnetic field, also known as the ponderomotive force. This separation of the ionization and acceleration stages allows throttling of propellant flow, which then changes the thrust magnitude and ...
Atmosphere-breathing electric propulsion, or air-breathing electric propulsion, shortly ABEP, [1] is a propulsion technology for spacecraft, which could allow thrust generation in low orbits without the need of on-board propellant, by using residual gases in the atmosphere as propellant. Atmosphere-breathing electric propulsion could make a new ...
The propellant, such as xenon gas, is fed through the anode, which has numerous small holes in it to act as a gas distributor. As the neutral xenon atoms diffuse into the channel of the thruster, they are ionized by collisions with circulating high-energy electrons (typically 10–40 eV, or about 10% of the discharge voltage).
With a conventional chemical propulsion system, 2% of a rocket's total mass might make it to the destination, with the other 98% having been consumed as fuel. With an electric propulsion system, 70% of what's aboard in low Earth orbit can make it to a deep-space destination. [24] However, there is a trade-off.
radio frequency (RF) oscillation of an electric field induced by an alternating electromagnet, which results in a self-sustaining discharge and omits any cathode (RIT 10, RIT 22, μN-RIT thrusters) microwave heating (μ10, μ20) Related to the electrostatic ion production method is the need for a cathode and power supply requirements.
The primary application for this thruster design is intended for satellite station-keeping, long-term LEO-to-GEO orbit transfers and deep-space applications. While a typical design could provide a 50-year life span, [citation needed] or a saving of 1,000 pounds (450 kg) of launch weight for large satellites, this type of thruster could also significantly reduce the length of interplanetary ...
The Variable Specific Impulse Magnetoplasma Rocket (VASIMR) is an electrothermal thruster under development for possible use in spacecraft propulsion. It uses radio waves to ionize and heat an inert propellant , forming a plasma, then a magnetic field to confine and accelerate the expanding plasma , generating thrust .