Search results
Results from the WOW.Com Content Network
For example the five compositions of 5 into distinct terms are: 5; 4 + 1; 3 + 2; 2 + 3; 1 + 4. Compare this with the three partitions of 5 into distinct terms: 5; 4 + 1; 3 + 2. Note that the ancient Sanskrit sages discovered many years before Fibonacci that the number of compositions of any natural number n as the sum of 1's and 2's is the nth ...
Suppose one wants to determine the 5-combination at position 72. The successive values of () for n = 4, 5, 6, ... are 0, 1, 6, 21, 56, 126, 252, ..., of which the largest one not exceeding 72 is 56, for n = 8. Therefore c 5 = 8, and the remaining elements form the 4-combination at position 72 − 56 = 16. The successive values of () for n = 3 ...
Name First elements Short description OEIS Natural numbers: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, ... The natural numbers (positive integers) n ∈ . A000027: Triangular ...
A list of articles about numbers (not about numerals). Topics include powers of ten, notable integers, prime and cardinal numbers, and the myriad system.
The number of such strings is the number of ways to place 10 stars in 13 positions, () = =, which is the number of 10-multisubsets of a set with 4 elements. Bijection between 3-subsets of a 7-set (left) and 3-multisets with elements from a 5-set (right).
There usually are fewer 2-digit Friedman numbers than 3-digit and more in any given base, but the 2-digit ones are easier to find. If we represent a 2-digit number as mb + n, where b is the base and m, n are integers from 0 to b−1, we need only check each possible combination of m and n against the equalities mb + n = m n, and mb + n = n m to see which ones are true.
The numerical 3-d matching problem is problem [SP16] of Garey and Johnson. [1] They claim it is NP-complete, and refer to, [2] but the claim is not proved at that source. The NP-hardness of the related problem 3-partition is done in [1] by a reduction from 3-dimensional matching via 4-partition. To prove NP-completeness of the numerical 3 ...
where f (2k−1) is the (2k − 1)th derivative of f and B 2k is the (2k)th Bernoulli number: B 2 = 1 / 6 , B 4 = − + 1 / 30 , and so on. Setting f ( x ) = x , the first derivative of f is 1, and every other term vanishes, so [ 15 ]