enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Sulfur metabolism - Wikipedia

    en.wikipedia.org/wiki/Sulfur_metabolism

    From the sulfide they form the amino acids cysteine and methionine, sulfolipids, and other sulfur compounds. Animals obtain sulfur from cysteine and methionine in the protein that they consume. Sulfur is the third most abundant mineral element in the body. [21] The amino acids cysteine and methionine are used by the body to make glutathione.

  3. Adenylyl-sulfate reductase (thioredoxin) - Wikipedia

    en.wikipedia.org/wiki/Adenylyl-sulfate_reductase...

    The thioredoxin dependent adenylyl-sulfate reductase's cleaved disulfuric ions are incorporated into the molecular structure of the proto-proteins in the formation of the aforementioned amino acids. In studies such as one published in the Journal of Biological Chemistry experimentally observed the use of this enzyme type and thioredoxin in the ...

  4. Organosulfur chemistry - Wikipedia

    en.wikipedia.org/wiki/Organosulfur_chemistry

    Nature is abound with organosulfur compounds—sulfur is vital for life. Of the 20 common amino acids, two (cysteine and methionine) are organosulfur compounds, and the antibiotics penicillin and sulfa drugs both contain sulfur. While sulfur-containing antibiotics save many lives, sulfur mustard is a deadly chemical warfare agent.

  5. Cystathionine beta synthase - Wikipedia

    en.wikipedia.org/wiki/Cystathionine_beta_synthase

    CBS occupies a pivotal position in mammalian sulfur metabolism at the homocysteine junction where the decision to conserve methionine or to convert it to cysteine via the transsulfuration pathway, is made. Moreover, the transsulfuration pathway is the only pathway capable of removing sulfur-containing amino acids under conditions of excess. [9]

  6. Sulfur-reducing bacteria - Wikipedia

    en.wikipedia.org/wiki/Sulfur-reducing_bacteria

    Desulfuromusa genus includes bacteria obligately anaerobic that use sulfur as an electron acceptor and short-chain fatty acids, dicarboxylic acids, and amino acids, as electron donors that are oxidized completely to CO 2. They are gram negative and complete oxidizer bacteria; their cells are motile and slightly curved or rod shaped.

  7. Microbial metabolism - Wikipedia

    en.wikipedia.org/wiki/Microbial_metabolism

    Sulfur oxidation involves the oxidation of reduced sulfur compounds (such as sulfide H 2 S), inorganic sulfur (S), and thiosulfate (S 2 O 2− 3) to form sulfuric acid (H 2 SO 4). A classic example of a sulfur-oxidizing bacterium is Beggiatoa, a microbe originally described by Sergei Winogradsky, one of the founders of environmental microbiology.

  8. Methionine sulfoxide - Wikipedia

    en.wikipedia.org/wiki/Methionine_sulfoxide

    The sulfur-containing amino acids methionine and cysteine are more easily oxidized than the other amino acids. [ 1 ] [ 2 ] Unlike oxidation of other amino acids, the oxidation of methionine can be reversed by enzymatic action, specifically by enzymes in the methionine sulfoxide reductase family of enzymes.

  9. Microbial oxidation of sulfur - Wikipedia

    en.wikipedia.org/wiki/Microbial_oxidation_of_sulfur

    The oxidation of reduced sulfur compounds is performed exclusively by Bacteria and Archaea.All the Archaea involved in this process are aerobic and belong to the Order Sulfolobales, [20] [21] characterized by acidophiles (extremophiles that require low pHs to grow) and thermophiles (extremophiles that require high temperatures to grow).