enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Pipe network analysis - Wikipedia

    en.wikipedia.org/wiki/Pipe_network_analysis

    Once the friction factors of the pipes are obtained (or calculated from pipe friction laws such as the Darcy-Weisbach equation), we can consider how to calculate the flow rates and head losses on the network. Generally the head losses (potential differences) at each node are neglected, and a solution is sought for the steady-state flows on the ...

  3. Hardy Cross method - Wikipedia

    en.wikipedia.org/wiki/Hardy_Cross_method

    The Hardy Cross method can be used to calculate the flow distribution in a pipe network. Consider the example of a simple pipe flow network shown at the right. For this example, the in and out flows will be 10 liters per second. We will consider n to be 2, and the head loss per unit flow r, and initial flow guess for each pipe as follows:

  4. Flow distribution in manifolds - Wikipedia

    en.wikipedia.org/wiki/Flow_distribution_in_manifolds

    The flow in manifolds is extensively encountered in many industrial processes when it is necessary to distribute a large fluid stream into several parallel streams, or to collect them into one discharge stream, such as in fuel cells, heat exchangers, radial flow reactors, hydronics, fire protection, and irrigation. Manifolds can usually be ...

  5. Hydronic balancing - Wikipedia

    en.wikipedia.org/wiki/Hydronic_balancing

    To provide the correct power output, heating or cooling devices require a "design flow." Theoretically, it is possible to design plants that deliver the design flow at each terminal unit (heating or cooling device). In reality, this is not possible because pipes and valves only come in certain sizes.

  6. Darcy–Weisbach equation - Wikipedia

    en.wikipedia.org/wiki/Darcy–Weisbach_equation

    The flow rate can be converted to a mean flow velocity V by dividing by the wetted area of the flow (which equals the cross-sectional area of the pipe if the pipe is full of fluid). Pressure has dimensions of energy per unit volume, therefore the pressure drop between two points must be proportional to the dynamic pressure q.

  7. Hazen–Williams equation - Wikipedia

    en.wikipedia.org/wiki/Hazen–Williams_equation

    The Hazen–Williams equation is an empirical relationship that relates the flow of water in a pipe with the physical properties of the pipe and the pressure drop caused by friction. It is used in the design of water pipe systems [1] such as fire sprinkler systems, [2] water supply networks, and irrigation systems.

  8. Darcy friction factor formulae - Wikipedia

    en.wikipedia.org/wiki/Darcy_friction_factor_formulae

    The Reynolds number Re is taken to be Re = V D / ν, where V is the mean velocity of fluid flow, D is the pipe diameter, and where ν is the kinematic viscosity μ / ρ, with μ the fluid's Dynamic viscosity, and ρ the fluid's density. The pipe's relative roughness ε / D, where ε is the pipe's effective roughness height and D the pipe ...

  9. Fixture unit - Wikipedia

    en.wikipedia.org/wiki/Fixture_unit

    A Fixture Unit is not a flow rate unit but a design factor. A fixture unit is equal to 1 cubic foot (0.028 m 3) of water drained in a 1 + 1 ⁄ 4 inches (32 mm) diameter pipe over one minute. [2] One cubic foot of water is roughly 7.48 US gallons (28.3 L; 6.23 imp gal). A Fixture Unit is used in plumbing design for both water supply and waste ...