enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. DNA and RNA codon tables - Wikipedia

    en.wikipedia.org/wiki/DNA_and_RNA_codon_tables

    The first table—the standard table—can be used to translate nucleotide triplets into the corresponding amino acid or appropriate signal if it is a start or stop codon. The second table, appropriately called the inverse, does the opposite: it can be used to deduce a possible triplet code if the amino acid is known.

  3. Thymine - Wikipedia

    en.wikipedia.org/wiki/Thymine

    Thymine (/ ˈ θ aɪ m ɪ n /) (symbol T or Thy) is one of the four nucleotide bases in the nucleic acid of DNA that are represented by the letters G–C–A–T. The others are adenine, guanine, and cytosine. Thymine is also known as 5-methyluracil, a pyrimidine nucleobase. In RNA, thymine is replaced by the nucleobase uracil.

  4. Nucleic acid - Wikipedia

    en.wikipedia.org/wiki/Nucleic_acid

    Deoxyribonucleic acid (DNA) is a nucleic acid containing the genetic instructions used in the development and functioning of all known living organisms. The chemical DNA was discovered in 1869, but its role in genetic inheritance was not demonstrated until 1943. The DNA segments that carry this genetic information are called genes.

  5. Molecular Structure of Nucleic Acids: A Structure for ...

    en.wikipedia.org/wiki/Molecular_Structure_of...

    It is not always the case that the structure of a molecule is easy to relate to its function. What makes the structure of DNA so obviously related to its function was described modestly at the end of the article: "It has not escaped our notice that the specific pairing we have postulated immediately suggests a possible copying mechanism for the genetic material".

  6. Nucleic acid tertiary structure - Wikipedia

    en.wikipedia.org/wiki/Nucleic_acid_tertiary...

    Nucleic acid tertiary structure is the three-dimensional shape of a ... The double helix makes one complete turn about its axis every 10.4–10.5 base pairs in ...

  7. Nucleic acid structure - Wikipedia

    en.wikipedia.org/wiki/Nucleic_acid_structure

    Nucleic acid design can be used to create nucleic acid complexes with complicated secondary structures such as this four-arm junction. These four strands associate into this structure because it maximizes the number of correct base pairs, with As matched to Ts and Cs matched to Gs. Image from Mao, 2004. [5]

  8. Nucleotide base - Wikipedia

    en.wikipedia.org/wiki/Nucleotide_base

    DNA and RNA also contain other (non-primary) bases that have been modified after the nucleic acid chain has been formed. In DNA, the most common modified base is 5-methylcytosine (m 5 C). In RNA, there are many modified bases, including those contained in the nucleosides pseudouridine (Ψ), dihydrouridine (D), inosine (I), and 7-methylguanosine ...

  9. Cyclic nucleotide - Wikipedia

    en.wikipedia.org/wiki/Cyclic_nucleotide

    Cellular concentrations of cyclic nucleotides can be very low, in the 10 −7 M range, because metabolism and function are often localized in particular parts of the cell. [1] A highly conserved cyclic nucleotide-binding domain (CNB) is present in all proteins that bind cNMPs, regardless of their biological function.