enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. List of undecidable problems - Wikipedia

    en.wikipedia.org/wiki/List_of_undecidable_problems

    Hilbert's tenth problem: the problem of deciding whether a Diophantine equation (multivariable polynomial equation) has a solution in integers. Determining whether a given initial point with rational coordinates is periodic, or whether it lies in the basin of attraction of a given open set, in a piecewise-linear iterated map in two dimensions ...

  3. Vector logic - Wikipedia

    en.wikipedia.org/wiki/Vector_logic

    In vector logic, the matrix-vector structure of logical operators is an exact translation to the format of linear algebra of these Boolean polynomials, where the x and 1−x correspond to vectors s and n respectively (the same for y and 1−y). In the example of NAND, f(1,1)=n and f(1,0)=f(0,1)=f(0,0)=s and the matrix version becomes:

  4. Logical matrix - Wikipedia

    en.wikipedia.org/wiki/Logical_matrix

    A permutation matrix is a (0, 1)-matrix, all of whose columns and rows each have exactly one nonzero element.. A Costas array is a special case of a permutation matrix.; An incidence matrix in combinatorics and finite geometry has ones to indicate incidence between points (or vertices) and lines of a geometry, blocks of a block design, or edges of a graph.

  5. Matrix chain multiplication - Wikipedia

    en.wikipedia.org/wiki/Matrix_chain_multiplication

    For the example below, there are four sides: A, B, C and the final result ABC. A is a 10×30 matrix, B is a 30×5 matrix, C is a 5×60 matrix, and the final result is a 10×60 matrix. The regular polygon for this example is a 4-gon, i.e. a square: The matrix product AB is a 10x5 matrix and BC is a 30x60 matrix.

  6. Strassen algorithm - Wikipedia

    en.wikipedia.org/wiki/Strassen_algorithm

    This reduces the number of matrix additions and subtractions from 18 to 15. The number of matrix multiplications is still 7, and the asymptotic complexity is the same. [6] The algorithm was further optimised in 2017, [7] reducing the number of matrix additions per step to 12 while maintaining the number of matrix multiplications, and again in ...

  7. Gaussian elimination - Wikipedia

    en.wikipedia.org/wiki/Gaussian_elimination

    For example, to solve a system of n equations for n unknowns by performing row operations on the matrix until it is in echelon form, and then solving for each unknown in reverse order, requires n(n + 1)/2 divisions, (2n 3 + 3n 2 − 5n)/6 multiplications, and (2n 3 + 3n 2 − 5n)/6 subtractions, [10] for a total of approximately 2n 3 /3 operations.

  8. Matrix multiplication algorithm - Wikipedia

    en.wikipedia.org/wiki/Matrix_multiplication...

    The definition of matrix multiplication is that if C = AB for an n × m matrix A and an m × p matrix B, then C is an n × p matrix with entries = =. From this, a simple algorithm can be constructed which loops over the indices i from 1 through n and j from 1 through p, computing the above using a nested loop:

  9. Eigenvalue algorithm - Wikipedia

    en.wikipedia.org/wiki/Eigenvalue_algorithm

    Given an n × n square matrix A of real or complex numbers, an eigenvalue λ and its associated generalized eigenvector v are a pair obeying the relation [1] =,where v is a nonzero n × 1 column vector, I is the n × n identity matrix, k is a positive integer, and both λ and v are allowed to be complex even when A is real.l When k = 1, the vector is called simply an eigenvector, and the pair ...