Search results
Results from the WOW.Com Content Network
This is a list of well-known dimensionless quantities illustrating their variety of forms and applications. The tables also include pure numbers , dimensionless ratios, or dimensionless physical constants ; these topics are discussed in the article.
The term fundamental physical constant is sometimes used to refer to some universal dimensionless constants. Perhaps the best-known example is the fine-structure constant , α , which has an approximate value of 1 / 137.036 .
Dimensionless quantities, or quantities of dimension one, [1] are quantities implicitly defined in a manner that prevents their aggregation into units of measurement. [ 2 ] [ 3 ] Typically expressed as ratios that align with another system, these quantities do not necessitate explicitly defined units .
The constants listed here are known values of physical constants expressed in SI units; that is, physical quantities that are generally believed to be universal in nature and thus are independent of the unit system in which they are measured. Many of these are redundant, in the sense that they obey a known relationship with other physical ...
The term "physical constant" refers to the physical quantity, and not to the numerical value within any given system of units. For example, the speed of light is defined as having the numerical value of 299 792 458 when expressed in the SI unit metres per second, and as having the numerical value of 1 when expressed in the natural units Planck ...
As such, the fine-structure constant is chiefly a quantity determining (or determined by) the elementary charge: e = √ 4πα ≈ 0.302 822 12 in terms of such a natural unit of charge. In the system of atomic units , which sets e = m e = ħ = 4 πε 0 = 1 , the expression for the fine-structure constant becomes α = 1 c . {\displaystyle ...
Mathematically, a scalar field on a region U is a real or complex-valued function or distribution on U. [1] [2] The region U may be a set in some Euclidean space, Minkowski space, or more generally a subset of a manifold, and it is typical in mathematics to impose further conditions on the field, such that it be continuous or often continuously differentiable to some order.
The final column lists some special properties that some of the quantities have, such as their scaling behavior (i.e. whether the quantity is intensive or extensive), their transformation properties (i.e. whether the quantity is a scalar, vector, matrix or tensor), and whether the quantity is conserved.