Search results
Results from the WOW.Com Content Network
Overall labor effectiveness (OLE) is a key performance indicator (KPI) that measures the utilization, performance, and quality of the workforce and its impact on productivity. Similar to overall equipment effectiveness (OEE), OLE measures availability, performance, and quality.
Unlike efficacy (effectiveness), which is a unit of measurement, efficiency is a unitless number expressed as a percentage, requiring only that the input and output units be of the same type. The luminous efficiency of a light source is thus the percentage of luminous efficacy per theoretical maximum efficacy at a specific wavelength.
A realistic indication of energy efficiency over an entire year can be achieved by using seasonal COP or seasonal coefficient of performance (SCOP) for heat. Seasonal energy efficiency ratio (SEER) is mostly used for air conditioning. SCOP is a new methodology which gives a better indication of expected real-life performance of heat pump ...
Energy intensity is affected by climate, economic structure (e.g. services vs. manufacturing), trade, as well as the energy efficiency of buildings, vehicles, and industry. [2] High energy intensity means high industrial output as portion of GDP. Countries with low energy intensity signifies labor intensive economy.
In thermal engineering, exergy efficiency (also known as the second-law efficiency or rational efficiency) computes the effectiveness of a system relative to its performance in reversible conditions. It is defined as the ratio of the thermal efficiency of an actual system compared to an idealized or reversible version of the system for heat ...
The exergetic, or 2nd Law, efficiency is a ratio of the exergy output divided by the exergy input. This formulation takes into account the quality of the energy, often offering a more accurate and useful analysis than efficiency estimates only using the First Law of Thermodynamics. Work can be extracted also from bodies colder than the ...
Power is the rate with respect to time at which work is done; it is the time derivative of work: =, where P is power, W is work, and t is time. We will now show that the mechanical power generated by a force F on a body moving at the velocity v can be expressed as the product: P = d W d t = F ⋅ v {\displaystyle P={\frac {dW}{dt}}=\mathbf {F ...
The first and second law of thermodynamics are the most fundamental equations of thermodynamics. They may be combined into what is known as fundamental thermodynamic relation which describes all of the changes of thermodynamic state functions of a system of uniform temperature and pressure.