Search results
Results from the WOW.Com Content Network
Time dilation is the difference in elapsed time as measured by two clocks, either because of a relative velocity between them (special relativity), or a difference in gravitational potential between their locations (general relativity). When unspecified, "time dilation" usually refers to the effect due to velocity.
This combines the effects of time dilation due to motion (by factor α = 0.6, five years on Earth are 3 years on ship) and the effect of increasing light-time-delay (which grows from 0 to 4 years). Of course, the observed frequency of the transmission is also 1 ⁄ 3 the frequency of the transmitter (a reduction in frequency; "red-shifted").
Gravitational time dilation is a form of time dilation, an actual difference of elapsed time between two events, as measured by observers situated at varying distances from a gravitating mass. The lower the gravitational potential (the closer the clock is to the source of gravitation), the slower time passes, speeding up as the gravitational ...
However, approximately 412 muons per hour arrived in Cambridge, resulting in a time dilation factor of 8.8 ± 0.8. Frisch and Smith showed that this is in agreement with the predictions of special relativity: The time dilation factor for muons on Mount Washington traveling at 0.995 c to 0.9954 c is approximately 10.2.
In physics, the Ives–Stilwell experiment tested the contribution of relativistic time dilation to the Doppler shift of light. [1] [2] The result was in agreement with the formula for the transverse Doppler effect and was the first direct, quantitative confirmation of the time dilation factor. Since then many Ives–Stilwell type experiments ...
Fig 4–2. Relativistic time dilation, as depicted in a single Loedel spacetime diagram. Both observers consider the clock of the other as running slower. Relativistic time dilation refers to the fact that a clock (indicating its proper time in its rest frame) that moves relative to an observer is observed to run slower. The situation is ...
Also, gravitational time dilation was measured from a difference in elevation between two clocks of only 33 cm (13 in). [28] [29] Presently both gravitational and velocity effects are routinely incorporated, for example, into the calculations used for the Global Positioning System. [30]
In the International System of Units (SI), the unit of time is the second (symbol: s). It has been defined since 1967 as "the duration of 9 192 631 770 periods of the radiation corresponding to the transition between the two hyperfine levels of the ground state of the caesium 133 atom", and is an SI base unit. [12]