Search results
Results from the WOW.Com Content Network
For example, as the Earth's rotational velocity is 465 m/s at the equator, a rocket launched tangentially from the Earth's equator to the east requires an initial velocity of about 10.735 km/s relative to the moving surface at the point of launch to escape whereas a rocket launched tangentially from the Earth's equator to the west requires an ...
At intermediate speeds, it will revolve around Earth along an elliptical orbit (C, D). Beyond the escape velocity , it will leave the Earth without returning (E). Newton's cannonball was a thought experiment Isaac Newton used to hypothesize that the force of gravity was universal, and it was the key force for planetary motion .
Theoretical minimum energy required to accelerate 1 kg of matter to escape velocity from Earth's surface (ignoring atmosphere) [126] 9×10 7 J Total mass-energy of 1 microgram of matter (25 kWh) 10 8 1×10 8 J: Kinetic energy of a 55 tonne aircraft at typical landing speed (59 m/s or 115 knots) [citation needed] 1.1×10 8 J
To help compare different orders of magnitude, the following list describes various speed levels between approximately 2.2 × 10 −18 m/s and 3.0 × 10 8 m/s (the speed of light). Values in bold are exact.
The following is a list of speed records for various types of vehicles.This list only presents the single greatest speed achieved in each broad record category; for more information on records under variations of test conditions, see the specific article for each record category.
A rocket's required mass ratio as a function of effective exhaust velocity ratio. The classical rocket equation, or ideal rocket equation is a mathematical equation that describes the motion of vehicles that follow the basic principle of a rocket: a device that can apply acceleration to itself using thrust by expelling part of its mass with high velocity and can thereby move due to the ...
The escape velocity from Earth's surface is about 11 200 m/s, and is irrespective of the direction of the object. This makes "escape velocity" somewhat of a misnomer, as the more correct term would be "escape speed": any object attaining a velocity of that magnitude, irrespective of atmosphere, will leave the vicinity of the base body as long ...
At any time the average speed from = is 1.5 times the current speed, i.e. 1.5 times the local escape velocity. To have t = 0 {\displaystyle t=0\!\,} at the surface, apply a time shift; for the Earth (and any other spherically symmetric body with the same average density) as central body this time shift is 6 minutes and 20 seconds; seven of ...