Search results
Results from the WOW.Com Content Network
From the sulfide they form the amino acids cysteine and methionine, sulfolipids, and other sulfur compounds. Animals obtain sulfur from cysteine and methionine in the protein that they consume. Sulfur is the third most abundant mineral element in the body. [21] The amino acids cysteine and methionine are used by the body to make glutathione.
DnaA is a protein that activates initiation of DNA replication in bacteria. [1] Based on the Replicon Model, a positively active initiator molecule contacts with a particular spot on a circular chromosome called the replicator to start DNA replication. [2] It is a replication initiation factor which promotes the unwinding of DNA at oriC. [1]
Life functions through the specialized chemistry of carbon and water, and builds largely upon four key families of chemicals: lipids for cell membranes, carbohydrates such as sugars, amino acids for protein metabolism, and nucleic acid DNA and RNA for the mechanisms of heredity. Any successful theory of abiogenesis must explain the origins and ...
This allowed each to be observed and analyzed separately. Since phosphorus is contained in DNA but not amino acids, radioactive phosphorus-32 was used to label the DNA contained in the T2 phage. Radioactive sulfur-35 was used to label the protein sections of the T2 phage, because sulfur is contained in protein but not DNA. [6]
During DNA replication in bacteria two key functions are expressed. The first is a DNA polymerizing function of DNA polymerase , and the second is a 3’ to 5’ exonuclease editing function. Both of these functions may be encoded within one gene , or alternatively the two functions may be encoded by separate genes.
In bacteria, SAM is bound by the SAM riboswitch, which regulates genes involved in methionine or cysteine biosynthesis. In eukaryotic cells, SAM serves as a regulator of a variety of processes including DNA, tRNA, and rRNA methylation; immune response; [2] amino acid metabolism; transsulfuration; and more.
Folate is an essential metabolite for bacterial growth and replication because it is used in DNA synthesis, primarily at thymidylate and purine biosynthesis, and amino acids synthesis, including serine, glycine and methionine. [12] Hence, blockage of folate production inhibits the folate-dependent metabolic processes for bacterial growth.
Single-stranded DNA is produced during all aspects of DNA metabolism: replication, recombination, and repair. As well as stabilizing this single-stranded DNA, SSB proteins bind to and modulate the function of numerous proteins involved in all of these processes. Active E. coli SSB is composed of four identical 19 kDa subunits. Binding of single ...