Search results
Results from the WOW.Com Content Network
Bending of plates, or plate bending, refers to the deflection of a plate perpendicular to the plane of the plate under the action of external forces and moments. The amount of deflection can be determined by solving the differential equations of an appropriate plate theory. The stresses in the plate can be calculated from these deflections.
The bending stiffness is the resistance of a member against bending deflection/deformation. It is a function of the Young's modulus E {\displaystyle E} , the second moment of area I {\displaystyle I} of the beam cross-section about the axis of interest, length of the beam and beam boundary condition.
The plate elastic thickness (usually referred to as effective elastic thickness of the lithosphere). The elastic properties of the plate; The applied load or force; As flexural rigidity of the plate is determined by the Young's modulus, Poisson's ratio and cube of the plate's elastic thickness, it is a governing factor in both (1) and (2).
In physics, Hooke's law is an empirical law which states that the force (F) needed to extend or compress a spring by some distance (x) scales linearly with respect to that distance—that is, F s = kx, where k is a constant factor characteristic of the spring (i.e., its stiffness), and x is small compared to the total possible deformation of the spring.
In continuum mechanics, plate theories are mathematical descriptions of the mechanics of flat plates that draw on the theory of beams. Plates are defined as plane structural elements with a small thickness compared to the planar dimensions. [1] The typical thickness to width ratio of a plate structure is less than 0.1.
These two loadings are lowered from above at a constant rate until sample failure. Calculation of the flexural stress σ f {\displaystyle \sigma _{f}} 4-point bend loading σ f = 3 4 F L b d 2 {\displaystyle \sigma _{f}={\frac {3}{4}}{\frac {FL}{bd^{2}}}} [ 3 ] for four-point bending test where the loading span is 1/2 of the support span ...
Flexibility is the inverse of stiffness. For example, consider a spring that has Q and q as, respectively, its force and deformation: The spring stiffness relation is Q = k q where k is the spring stiffness. Its flexibility relation is q = f Q, where f is the spring flexibility. Hence, f = 1/k.
The equations are written only for the small domain of individual elements of the structure rather than a single equation that describes the response of the system as a whole (a continuum). The latter would result in an intractable problem, hence the utility of the finite element method.