Search results
Results from the WOW.Com Content Network
Osmium is a hard, brittle, blue-gray metal, and the densest stable element—about twice as dense as lead. The density of osmium is slightly greater than that of iridium ; the two are so similar (22.587 versus 22.562 g/cm 3 at 20 °C) that each was at one time considered to be the densest element.
Help; Learn to edit; Community portal; Recent changes; Upload file; Special pages
Some nonmetals (black P, S, and Se) are brittle solids at room temperature (although each of these also have malleable, pliable or ductile allotropes). From left to right in the periodic table, the nonmetals can be divided into the reactive nonmetals and the noble gases. The reactive nonmetals near the metalloids show some incipient metallic ...
With its similar properties to and lower cost than rhodium, electric contacts are a major use of ruthenium. The ruthenium plate is applied to the electrical contact and electrode base metal by electroplating or sputtering. Osmium is a hard but brittle metal that remains lustrous even at high temperatures. It has a very low compressibility.
Boron is a lustrous, barely reactive solid with a density 2.34 g/cm 3 (cf. aluminium 2.70), and is hard (MH 9.3) and brittle. It melts at 2076 °C (cf. steel ~1370 °C) and boils at 3927 °C. Boron has a complex rhombohedral crystalline structure (CN 5+). It is a semiconductor with a band gap of about 1.56 eV.
Some metals that are generally described as ductile include gold and copper, while platinum is the most ductile of all metals in pure form. [4] However, not all metals experience ductile failure as some can be characterized with brittle failure like cast iron. Polymers generally can be viewed as ductile materials as they typically allow for ...
Bailar et al. [156] refer to bismuth as being, 'the least "metallic" metal in its physical properties' given its brittle nature (and possibly) 'the lowest electrical conductivity of all metals.' [n 17] Moscovium is expected to be a quite reactive metal. A standard reduction potential of −1.5 V for the Mc + /Mc couple is expected.
Intermetallic compounds are generally brittle at room temperature and have high melting points. Cleavage or intergranular fracture modes are typical of intermetallics due to limited independent slip systems required for plastic deformation. However, some intermetallics have ductile fracture modes such as Nb–15Al–40Ti.