Search results
Results from the WOW.Com Content Network
OpenML: [494] Web platform with Python, R, Java, and other APIs for downloading hundreds of machine learning datasets, evaluating algorithms on datasets, and benchmarking algorithm performance against dozens of other algorithms. PMLB: [495] A large, curated repository of benchmark datasets for evaluating supervised machine learning algorithms ...
In machine learning, a common task is the study and construction of algorithms that can learn from and make predictions on data. [1] Such algorithms function by making data-driven predictions or decisions, [2] through building a mathematical model from input data. These input data used to build the model are usually divided into multiple data ...
The environmental data are most often climate data (e.g. temperature, precipitation), but can include other variables such as soil type, water depth, and land cover. SDMs are used in several research areas in conservation biology , ecology and evolution .
Sample images from MNIST test dataset. The MNIST database (Modified National Institute of Standards and Technology database [1]) is a large database of handwritten digits that is commonly used for training various image processing systems. [2] [3] The database is also widely used for training and testing in the field of machine learning.
The iris data set is widely used as a beginner's dataset for machine learning purposes. The dataset is included in R base and Python in the machine learning library scikit-learn, so that users can access it without having to find a source for it. Several versions of the dataset have been published. [8]
The Water Erosion Prediction Project (WEPP) model is a physically based erosion simulation model built on the fundamentals of hydrology, plant science, hydraulics, and erosion mechanics. [ 1 ] [ 2 ] The model was developed by an interagency team of scientists to replace the Universal Soil Loss Equation (USLE) and has been widely used in the ...
Water retention curve is the relationship between the water content, θ, and the soil water potential, ψ. The soil moisture curve is characteristic for different types of soil, and is also called the soil moisture characteristic. It is used to predict the soil water storage, water supply to the plants (field capacity) and soil aggregate stability.
In some applications such as automatic calibration or machine learning, the NSE lower limit of (−∞) creates problems. To eliminate this problem and re-scale the NSE to lie solely within the range of {0,1} normalization, use the following equation that yields a Normalized Nash–Sutcliffe Efficiency (NNSE) [6] [7]