enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Standard score - Wikipedia

    en.wikipedia.org/wiki/Standard_score

    Comparison of the various grading methods in a normal distribution, including: standard deviations, cumulative percentages, percentile equivalents, z-scores, T-scores. In statistics, the standard score is the number of standard deviations by which the value of a raw score (i.e., an observed value or data point) is above or below the mean value of what is being observed or measured.

  3. Standard normal table - Wikipedia

    en.wikipedia.org/wiki/Standard_normal_table

    To find a negative value such as –0.83, one could use a cumulative table for negative z-values [3] which yield a probability of 0.20327. But since the normal distribution curve is symmetrical, probabilities for only positive values of Z are typically given.

  4. One- and two-tailed tests - Wikipedia

    en.wikipedia.org/wiki/One-_and_two-tailed_tests

    p-value of chi-squared distribution for different number of degrees of freedom. The p-value was introduced by Karl Pearson [6] in the Pearson's chi-squared test, where he defined P (original notation) as the probability that the statistic would be at or above a given level. This is a one-tailed definition, and the chi-squared distribution is ...

  5. Z-test - Wikipedia

    en.wikipedia.org/wiki/Z-test

    For each significance level in the confidence interval, the Z-test has a single critical value (for example, 1.96 for 5% two tailed) which makes it more convenient than the Student's t-test whose critical values are defined by the sample size (through the corresponding degrees of freedom). Both the Z-test and Student's t-test have similarities ...

  6. Normal distribution - Wikipedia

    en.wikipedia.org/wiki/Normal_distribution

    About 68% of values drawn from a normal distribution are within one standard deviation σ from the mean; about 95% of the values lie within two standard deviations; and about 99.7% are within three standard deviations. [8] This fact is known as the 68–95–99.7 (empirical) rule, or the 3-sigma rule.

  7. 97.5th percentile point - Wikipedia

    en.wikipedia.org/wiki/97.5th_percentile_point

    "The value for which P = .05, or 1 in 20, is 1.96 or nearly 2; it is convenient to take this point as a limit in judging whether a deviation is to be considered significant or not." [11] In Table 1 of the same work, he gave the more precise value 1.959964. [12] In 1970, the value truncated to 20 decimal places was calculated to be

  8. Z-factor - Wikipedia

    en.wikipedia.org/wiki/Z-factor

    The constant factor 3 in the definition of the Z-factor is motivated by the normal distribution, for which more than 99% of values occur within three times standard deviations of the mean. If the data follow a strongly non-normal distribution, the reference points (e.g. the meaning of a negative value) may be misleading.

  9. Šidák correction - Wikipedia

    en.wikipedia.org/wiki/Šidák_correction

    For example, for = 0.05 and m = 10, the Bonferroni-adjusted level is 0.005 and the Šidák-adjusted level is approximately 0.005116. One can also compute confidence intervals matching the test decision using the Šidák correction by computing each confidence interval at the ⋅ {\displaystyle \cdot } (1 − α) 1/ m % level.