Search results
Results from the WOW.Com Content Network
Certain types of problems involving multivariate data, for example simple linear regression and multiple regression, are not usually considered to be special cases of multivariate statistics because the analysis is dealt with by considering the (univariate) conditional distribution of a single outcome variable given the other variables.
For example, a simple univariate regression may propose (,) = +, suggesting that the researcher believes = + + to be a reasonable approximation for the statistical process generating the data. Once researchers determine their preferred statistical model , different forms of regression analysis provide tools to estimate the parameters β ...
For example, suppose that in a particular sample the variable is uncorrelated with both and , while and are linearly related to each other. Then a regression of z {\displaystyle z} on y {\displaystyle y} and x {\displaystyle x} will yield an R {\displaystyle R} of zero, while a regression of y {\displaystyle y} on x {\displaystyle x} and z ...
The general linear model or general multivariate regression model is a compact way of simultaneously writing several multiple linear regression models. In that sense it is not a separate statistical linear model. The various multiple linear regression models may be compactly written as [1]
In statistics, polynomial regression is a form of regression analysis in which the relationship between the independent variable x and the dependent variable y is modeled as a polynomial in x. Polynomial regression fits a nonlinear relationship between the value of x and the corresponding conditional mean of y , denoted E( y | x ).
In statistics, multivariate adaptive regression splines (MARS) is a form of regression analysis introduced by Jerome H. Friedman in 1991. [1] It is a non-parametric regression technique and can be seen as an extension of linear models that automatically models nonlinearities and interactions between variables.
Ridge regression is a method of estimating the coefficients of multiple-regression models in scenarios where the independent variables are highly correlated. [1] It has been used in many fields including econometrics, chemistry, and engineering. [ 2 ]
One common method of construction of a multivariate t-distribution, for the case of dimensions, is based on the observation that if and are independent and distributed as (,) and (i.e. multivariate normal and chi-squared distributions) respectively, the matrix is a p × p matrix, and is a constant vector then the random variable = / / + has the density [1]