enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. TK Solver - Wikipedia

    en.wikipedia.org/wiki/TK_Solver

    TK Solver has three ways of solving systems of equations. The "direct solver" solves a system algebraically by the principle of consecutive substitution. When multiple rules contain multiple unknowns, the program can trigger an iterative solver which uses the Newton–Raphson algorithm to successively approximate based on initial guesses for ...

  3. Root-finding algorithm - Wikipedia

    en.wikipedia.org/wiki/Root-finding_algorithm

    Solving an equation f(x) = g(x) is the same as finding the roots of the function h(x) = f(x) – g(x). Thus root-finding algorithms can be used to solve any equation of continuous functions. However, most root-finding algorithms do not guarantee that they will find all roots of a function, and if such an algorithm does not find any root, that ...

  4. How to Solve It - Wikipedia

    en.wikipedia.org/wiki/How_to_Solve_It

    Russian inventor Genrich Altshuller developed an elaborate set of methods for problem solving known as TRIZ, which in many aspects reproduces or parallels Pólya's work. How to Solve it by Computer is a computer science book by R. G. Dromey. [29] It was inspired by Pólya's work.

  5. Physics-informed neural networks - Wikipedia

    en.wikipedia.org/wiki/Physics-informed_neural...

    Physics-informed neural networks for solving Navier–Stokes equations. Physics-informed neural networks (PINNs), [1] also referred to as Theory-Trained Neural Networks (TTNs), [2] are a type of universal function approximators that can embed the knowledge of any physical laws that govern a given data-set in the learning process, and can be described by partial differential equations (PDEs).

  6. Iterative method - Wikipedia

    en.wikipedia.org/wiki/Iterative_method

    In contrast, direct methods attempt to solve the problem by a finite sequence of operations. In the absence of rounding errors , direct methods would deliver an exact solution (for example, solving a linear system of equations A x = b {\displaystyle A\mathbf {x} =\mathbf {b} } by Gaussian elimination ).

  7. Green's function - Wikipedia

    en.wikipedia.org/wiki/Green's_function

    In other words, we can solve for φ(x) everywhere inside a volume where either (1) the value of φ(x) is specified on the bounding surface of the volume (Dirichlet boundary conditions), or (2) the normal derivative of φ(x) is specified on the bounding surface (Neumann boundary conditions). Suppose the problem is to solve for φ(x) inside the ...

  8. Calculus of variations - Wikipedia

    en.wikipedia.org/wiki/Calculus_of_Variations

    The calculus of variations began with the work of Isaac Newton, such as with Newton's minimal resistance problem, which he formulated and solved in 1685, and later published in his Principia in 1687, [2] which was the first problem in the field to be formulated and correctly solved, [2] and was also one of the most difficult problems tackled by variational methods prior to the twentieth century.

  9. Finite volume method - Wikipedia

    en.wikipedia.org/wiki/Finite_volume_method

    The finite volume method (FVM) is a method for representing and evaluating partial differential equations in the form of algebraic equations. [1] In the finite volume method, volume integrals in a partial differential equation that contain a divergence term are converted to surface integrals, using the divergence theorem. These terms are then ...