Search results
Results from the WOW.Com Content Network
for the first derivative, for the second derivative, for the third derivative, and for the nth derivative. When f is a function of several variables, it is common to use "∂", a stylized cursive lower-case d, rather than "D". As above, the subscripts denote the derivatives that are being taken.
The exterior derivative is a notion of differentiation of differential forms which generalizes the differential of a function (which is a differential 1-form). Pullback is, in particular, a geometric name for the chain rule for composing a map between manifolds with a differential form on the target manifold.
This states that differentiation is the reverse process to integration. Differentiation has applications in nearly all quantitative disciplines. In physics, the derivative of the displacement of a moving body with respect to time is the velocity of the body, and the derivative of the velocity with respect to time is acceleration.
The derivative function becomes a map between the tangent bundles of and . This definition is used in differential geometry. [49] Differentiation can also be defined for maps between vector space, such as Banach space, in which those generalizations are the Gateaux derivative and the Fréchet derivative. [50]
An illustration of the five-point stencil in one and two dimensions (top, and bottom, respectively). In numerical analysis, given a square grid in one or two dimensions, the five-point stencil of a point in the grid is a stencil made up of the point itself together with its four "neighbors".
The Fréchet derivative is quite similar to the formula for the derivative found in elementary one-variable calculus, (+) =, and simply moves A to the left hand side. However, the Fréchet derivative A denotes the function t ↦ f ′ ( x ) ⋅ t {\displaystyle t\mapsto f'(x)\cdot t} .
The classical finite-difference approximations for numerical differentiation are ill-conditioned. However, if f {\displaystyle f} is a holomorphic function , real-valued on the real line, which can be evaluated at points in the complex plane near x {\displaystyle x} , then there are stable methods.
The process of finding the difference quotient is called differentiation. Given a function defined at several points of the real line, the difference quotient at that point is a way of encoding the small-scale (i.e., from the point to the next) behavior of the function.