Search results
Results from the WOW.Com Content Network
The Köhler equation relates the saturation ratio over an aqueous solution droplet of fixed dry mass to its wet diameter as: [4] = (), with: S {\displaystyle S} = saturation ratio over the droplet surface defined as S = p w / p w 0 {\textstyle S=p_{w}/p_{w}^{0}} , where p w {\textstyle p_{w}} is the water vapor pressure of the solution ...
In physical chemistry, supersaturation occurs with a solution when the concentration of a solute exceeds the concentration specified by the value of solubility at equilibrium. Most commonly the term is applied to a solution of a solid in a liquid , but it can also be applied to liquids and gases dissolved in a liquid.
In quantum mechanics, the Gorini–Kossakowski–Sudarshan–Lindblad equation (GKSL equation, named after Vittorio Gorini, Andrzej Kossakowski, George Sudarshan and Göran Lindblad), master equation in Lindblad form, quantum Liouvillian, or Lindbladian is one of the general forms of Markovian master equations describing open quantum systems.
mpmath: a Python library for arbitrary-precision floating-point arithmetic [15] SympyCore: another Python computer algebra system [16] SfePy: Software for solving systems of coupled partial differential equations (PDEs) by the finite element method in 1D, 2D and 3D. [17] GAlgebra: Geometric algebra module (previously sympy.galgebra). [18]
In recent decades symplectic integrator in plasma physics has become an active research topic, [9] because straightforward applications of the standard symplectic methods do not suit the need of large-scale plasma simulations enabled by the peta- to exa-scale computing hardware. Special symplectic algorithms need to be customarily designed ...
The dynamics of relaxation are very important in cloud physics for accurate mathematical modelling. In water clouds where the concentrations are larger (hundreds per cm 3) and the temperatures are warmer (thus allowing for much lower supersaturation rates as compared to ice clouds), the relaxation times will be very low (seconds to minutes). [5]
The Kubo formula, named for Ryogo Kubo who first presented the formula in 1957, [1] [2] is an equation which expresses the linear response of an observable quantity due to a time-dependent perturbation.
Classical nucleation theory (CNT) is the most common theoretical model used to quantitatively study the kinetics of nucleation. [1] [2] [3] [4]Nucleation is the first step in the spontaneous formation of a new thermodynamic phase or a new structure, starting from a state of metastability.