enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Cosine similarity - Wikipedia

    en.wikipedia.org/wiki/Cosine_similarity

    Cosine similarity can be seen as a method of normalizing document length during comparison. In the case of information retrieval, the cosine similarity of two documents will range from , since the term frequencies cannot be negative. This remains true when using TF-IDF weights. The angle between two term frequency vectors cannot be greater than ...

  3. Similarity (network science) - Wikipedia

    en.wikipedia.org/wiki/Similarity_(network_science)

    Salton proposed that we regard the i-th and j-th rows/columns of the adjacency matrix as two vectors and use the cosine of the angle between them as a similarity measure. The cosine similarity of i and j is the number of common neighbors divided by the geometric mean of their degrees. [4] Its value lies in the range from 0 to 1.

  4. Sentence embedding - Wikipedia

    en.wikipedia.org/wiki/Sentence_embedding

    Then given a query in natural language, the embedding for the query can be generated. A top k similarity search algorithm is then used between the query embedding and the document chunk embeddings to retrieve the most relevant document chunks as context information for question answering tasks.

  5. Word2vec - Wikipedia

    en.wikipedia.org/wiki/Word2vec

    The word with embeddings most similar to the topic vector might be assigned as the topic's title, whereas far away word embeddings may be considered unrelated. As opposed to other topic models such as LDA , top2vec provides canonical ‘distance’ metrics between two topics, or between a topic and another embeddings (word, document, or otherwise).

  6. Vector space model - Wikipedia

    en.wikipedia.org/wiki/Vector_space_model

    Candidate documents from the corpus can be retrieved and ranked using a variety of methods. Relevance rankings of documents in a keyword search can be calculated, using the assumptions of document similarities theory, by comparing the deviation of angles between each document vector and the original query vector where the query is represented as a vector with same dimension as the vectors that ...

  7. Similarity measure - Wikipedia

    en.wikipedia.org/wiki/Similarity_measure

    Similarity measures are used to develop recommender systems. It observes a user's perception and liking of multiple items. On recommender systems, the method is using a distance calculation such as Euclidean Distance or Cosine Similarity to generate a similarity matrix with values representing the similarity of any pair of targets. Then, by ...

  8. Latent semantic analysis - Wikipedia

    en.wikipedia.org/wiki/Latent_semantic_analysis

    Documents and term vector representations can be clustered using traditional clustering algorithms like k-means using similarity measures like cosine. Given a query, view this as a mini document, and compare it to your documents in the low-dimensional space. To do the latter, you must first translate your query into the low-dimensional space.

  9. Small-angle approximation - Wikipedia

    en.wikipedia.org/wiki/Small-angle_approximation

    The most direct method is to truncate the Maclaurin series for each of the trigonometric functions. Depending on the order of the approximation , cos ⁡ θ {\displaystyle \textstyle \cos \theta } is approximated as either 1 {\displaystyle 1} or as 1 − 1 2 θ 2 {\textstyle 1-{\frac {1}{2}}\theta ^{2}} .