enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Cycle detection - Wikipedia

    en.wikipedia.org/wiki/Cycle_detection

    Cycle detection is the problem of finding i and j, given f and x 0. Several algorithms are known for finding cycles quickly and with little memory. Robert W. Floyd 's tortoise and hare algorithm moves two pointers at different speeds through the sequence of values until they both point to equal values.

  3. Hamiltonian path - Wikipedia

    en.wikipedia.org/wiki/Hamiltonian_path

    A Hamiltonian cycle, Hamiltonian circuit, vertex tour or graph cycle is a cycle that visits each vertex exactly once. A graph that contains a Hamiltonian cycle is called a Hamiltonian graph . Similar notions may be defined for directed graphs , where each edge (arc) of a path or cycle can only be traced in a single direction (i.e., the vertices ...

  4. Hamiltonian path problem - Wikipedia

    en.wikipedia.org/wiki/Hamiltonian_path_problem

    The Hamiltonian cycle problem is similar to the Hamiltonian path problem, except it asks if a given graph contains a Hamiltonian cycle. This problem may also specify the start of the cycle. The Hamiltonian cycle problem is a special case of the travelling salesman problem, obtained by setting the distance between two cities to one if they are ...

  5. Rocha–Thatte cycle detection algorithm - Wikipedia

    en.wikipedia.org/wiki/Rocha–Thatte_cycle...

    The Rocha–Thatte algorithm is a general algorithm for detecting cycles in a directed graph by message passing among its vertices, based on the bulk synchronous message passing abstraction. This is a vertex-centric approach in which the vertices of the graph work together for detecting cycles.

  6. Cycle (graph theory) - Wikipedia

    en.wikipedia.org/wiki/Cycle_(graph_theory)

    In graph theory, a cycle in a graph is a non-empty trail in which only the first and last vertices are equal. A directed cycle in a directed graph is a non-empty directed trail in which only the first and last vertices are equal. A graph without cycles is called an acyclic graph. A directed graph without directed cycles is called a directed ...

  7. Dijkstra's algorithm - Wikipedia

    en.wikipedia.org/wiki/Dijkstra's_algorithm

    Unlike Dijkstra's algorithm, the Bellman–Ford algorithm can be used on graphs with negative edge weights, as long as the graph contains no negative cycle reachable from the source vertex s. The presence of such cycles means that no shortest path can be found, since the label becomes lower each time the cycle is traversed.

  8. Hamiltonian completion - Wikipedia

    en.wikipedia.org/wiki/Hamiltonian_completion

    The problem is clearly NP-hard in the general case (since its solution gives an answer to the NP-complete problem of determining whether a given graph has a Hamiltonian cycle). The associated decision problem of determining whether K edges can be added to a given graph to produce a Hamiltonian graph is NP-complete.

  9. Zero-weight cycle problem - Wikipedia

    en.wikipedia.org/wiki/Zero-weight_cycle_problem

    Therefore, the special case of the zero-weight cycle problem, on graphs with no negative cycle, has a polynomial-time algorithm. [1] In contrast, for graphs that contain negative cycles, detecting a simple cycle of weight exactly 0 is an NP-complete problem. [1] This is true even when the weights are integers of polynomial magnitude.