enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Connectivity (graph theory) - Wikipedia

    en.wikipedia.org/wiki/Connectivity_(graph_theory)

    Steinitz's previous theorem that any 3-vertex-connected planar graph is a polytopal graph (Steinitz's theorem) gives a partial converse. According to a theorem of G. A. Dirac, if a graph is k-connected for k ≥ 2, then for every set of k vertices in the graph there is a cycle that passes through all the vertices in the set.

  3. k-vertex-connected graph - Wikipedia

    en.wikipedia.org/wiki/K-vertex-connected_graph

    A graph with connectivity 4. In graph theory, a connected graph G is said to be k-vertex-connected (or k-connected) if it has more than k vertices and remains connected whenever fewer than k vertices are removed. The vertex-connectivity, or just connectivity, of a graph is the largest k for which the graph is k-vertex-connected.

  4. Steinitz's theorem - Wikipedia

    en.wikipedia.org/wiki/Steinitz's_theorem

    The other, more difficult, direction of Steinitz's theorem states that every planar 3-connected graph is the graph of a convex polyhedron. There are three standard approaches for this part: proofs by induction, lifting two-dimensional Tutte embeddings into three dimensions using the Maxwell–Cremona correspondence, and methods using the circle ...

  5. Lovász–Woodall conjecture - Wikipedia

    en.wikipedia.org/wiki/Lovász–Woodall_conjecture

    [3] Another corollary of Menger's theorem is that in 2-connected graphs, any two edges lie on a common cycle. The proof, however, does not generalize to the corresponding statement for k edges in a k-connected graph; rather, Menger's theorem can be used to show that in a k-connected graph, given any 2 edges and k-2 vertices, there is a cycle ...

  6. Tutte embedding - Wikipedia

    en.wikipedia.org/wiki/Tutte_embedding

    In graph drawing and geometric graph theory, a Tutte embedding or barycentric embedding of a simple, 3-vertex-connected, planar graph is a crossing-free straight-line embedding with the properties that the outer face is a convex polygon and that each interior vertex is at the average (or barycenter) of its neighbors' positions.

  7. Barnette's conjecture - Wikipedia

    en.wikipedia.org/wiki/Barnette's_conjecture

    A planar graph is an undirected graph that can be embedded into the Euclidean plane without any crossings.A planar graph is called polyhedral if and only if it is 3-vertex-connected, that is, if there do not exist two vertices the removal of which would disconnect the rest of the graph.

  8. Tait's conjecture - Wikipedia

    en.wikipedia.org/wiki/Tait's_conjecture

    The "compulsory" edges of the fragments, that must be part of any Hamiltonian path through the fragment, are connected at the central vertex; because any cycle can use only two of these three edges, there can be no Hamiltonian cycle. The resulting Tutte graph is 3-connected and planar, so by Steinitz' theorem it is the graph of a polyhedron. In ...

  9. Polyhedral graph - Wikipedia

    en.wikipedia.org/wiki/Polyhedral_graph

    The polyhedral graph formed as the Schlegel diagram of a regular dodecahedron. In geometric graph theory, a branch of mathematics, a polyhedral graph is the undirected graph formed from the vertices and edges of a convex polyhedron. Alternatively, in purely graph-theoretic terms, the polyhedral graphs are the 3-vertex-connected, planar graphs.