Search results
Results from the WOW.Com Content Network
In spherical coordinates in N dimensions, with the parametrization x = rθ ∈ R N with r representing a positive real radius and θ an element of the unit sphere S N−1, = + + where Δ S N−1 is the Laplace–Beltrami operator on the (N − 1)-sphere, known as the spherical Laplacian.
The polar angle is denoted by [,]: it is the angle between the z-axis and the radial vector connecting the origin to the point in question. The azimuthal angle is denoted by φ ∈ [ 0 , 2 π ] {\displaystyle \varphi \in [0,2\pi ]} : it is the angle between the x -axis and the projection of the radial vector onto the xy -plane.
The connection Laplacian, also known as the rough Laplacian, is a differential operator acting on the various tensor bundles of a manifold, defined in terms of a Riemannian- or pseudo-Riemannian metric. When applied to functions (i.e. tensors of rank 0), the connection Laplacian is often called the Laplace–Beltrami operator.
Let (ϕ, ξ) be spherical coordinates on the sphere with respect to a particular point p of the sphere (the "north pole"), that is geodesic polar coordinates with respect to p. Here ϕ represents the latitude measurement along a unit speed geodesic from p, and ξ a parameter representing the choice of direction of the geodesic in S n−1. Then ...
In mathematics and physics, Laplace's equation is a second-order partial differential equation named after Pierre-Simon Laplace, who first studied its properties.This is often written as = or =, where = = is the Laplace operator, [note 1] is the divergence operator (also symbolized "div"), is the gradient operator (also symbolized "grad"), and (,,) is a twice-differentiable real-valued function.
In Cartesian coordinates, it can be written in dimensions as: = = = = (=) (=). Because the formula here contains a summation of indices, many mathematicians prefer the notation Δ 2 {\displaystyle \Delta ^{2}} over ∇ 4 {\displaystyle \nabla ^{4}} because the former makes clear which of the indices of the four nabla operators are contracted over.
Introducing r, θ, and φ for the spherical polar coordinates of the 3-vector r, and assuming that is a (smooth) function , we can write the Laplace equation in the following form = (^) =,, where L 2 is the square of the nondimensional angular momentum operator, ^ = ().
Figure 1: Coordinate isosurfaces for a point P (shown as a black sphere) in oblate spheroidal coordinates (μ, ν, φ). The z-axis is vertical, and the foci are at ±2. The red oblate spheroid (flattened sphere) corresponds to μ = 1, whereas the blue half-hyperboloid corresponds to ν = 45°.