Search results
Results from the WOW.Com Content Network
Checking if a set of quantum gates is universal can be done using group theory methods [18] and/or relation to (approximate) unitary t-designs [19] Some universal quantum gate sets include: The rotation operators R x (θ), R y (θ), R z (θ), the phase shift gate P(φ) [c] and CNOT are commonly used to form a universal quantum gate set. [20] [d]
Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Donate; Pages for logged out editors learn more
The quantum logic gates are reversible unitary transformations on at least one qubit. Multiple qubits taken together are referred to as quantum registers. To define quantum gates, we first need to specify the quantum replacement of an n-bit datum. The quantized version of classical n-bit space {0,1} n is the Hilbert space
In gate-based quantum computing, various sets of quantum logic gates are commonly used to express quantum operations. The following tables list several unitary quantum logic gates, together with their common name, how they are represented, and some of their properties.
The truth table of Levine-Pichler gate is given on the right. This gate has been improved using the methods of quantum optimal controls recently. [24] [25] Entangling gates in state-of-the art neutral atom quantum computing platforms have been implemented with up-to .995 quantum fidelity. [10]
The classical analog of the CNOT gate is a reversible XOR gate. How the CNOT gate can be used (with Hadamard gates) in a computation.. In computer science, the controlled NOT gate (also C-NOT or CNOT), controlled-X gate, controlled-bit-flip gate, Feynman gate or controlled Pauli-X is a quantum logic gate that is an essential component in the construction of a gate-based quantum computer.
In quantum computing, Mølmer–Sørensen gate scheme (or MS gate) refers to an implementation procedure for various multi-qubit quantum logic gates used mostly in trapped ion quantum computing. This procedure is based on the original proposition by Klaus Mølmer and Anders Sørensen in 1999–2000.
A quantum circuit consists of simple quantum gates, each of which acts on some finite number of qubits. Quantum algorithms may also be stated in other models of quantum computation, such as the Hamiltonian oracle model. [7] Quantum algorithms can be categorized by the main techniques involved in the algorithm.