enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Hyperbolic functions - Wikipedia

    en.wikipedia.org/wiki/Hyperbolic_functions

    sinh x is half the difference of e x and ex cosh x is the average of e x and ex. In terms of the exponential function: [1] [4] Hyperbolic sine: the odd part of the exponential function, that is, ⁡ = = =.

  3. Inverse hyperbolic functions - Wikipedia

    en.wikipedia.org/wiki/Inverse_hyperbolic_functions

    For all inverse hyperbolic functions, the principal value may be defined in terms of principal values of the square root and the logarithm function. However, in some cases, the formulas of § Definitions in terms of logarithms do not give a correct principal value, as giving a domain of definition which is too small and, in one case non-connected.

  4. De Moivre's formula - Wikipedia

    en.wikipedia.org/wiki/De_Moivre's_formula

    Since cosh x + sinh x = e x, an analog to de Moivre's formula also applies to the hyperbolic trigonometry. For all integers n, (⁡ + ⁡) = ⁡ + ⁡. If n is a rational number (but not necessarily an integer), then cosh nx + sinh nx will be one of the values of (cosh x + sinh x) n. [4]

  5. List of trigonometric identities - Wikipedia

    en.wikipedia.org/wiki/List_of_trigonometric...

    A formula for computing the trigonometric identities for the one-third angle exists, but it requires finding the zeroes of the cubic equation 4x 3 − 3x + d = 0, where is the value of the cosine function at the one-third angle and d is the known value of the cosine function at

  6. Euler's formula - Wikipedia

    en.wikipedia.org/wiki/Euler's_formula

    Euler's formula is ubiquitous in mathematics, physics, chemistry, and engineering. The physicist Richard Feynman called the equation "our jewel" and "the most remarkable formula in mathematics". [2] When x = π, Euler's formula may be rewritten as e iπ + 1 = 0 or e iπ = −1, which is known as Euler's identity.

  7. Small-angle approximation - Wikipedia

    en.wikipedia.org/wiki/Small-angle_approximation

    The second-order cosine approximation is especially useful in calculating the potential energy of a pendulum, which can then be applied with a Lagrangian to find the indirect (energy) equation of motion. When calculating the period of a simple pendulum, the small-angle approximation for sine is used to allow the resulting differential equation ...

  8. Bhāskara I's sine approximation formula - Wikipedia

    en.wikipedia.org/wiki/Bhāskara_I's_sine...

    The formula is given in verses 17–19, chapter VII, Mahabhaskariya of Bhāskara I. A translation of the verses is given below: [3] (Now) I briefly state the rule (for finding the bhujaphala and the kotiphala, etc.) without making use of the Rsine-differences 225, etc. Subtract the degrees of a bhuja (or koti) from the degrees of a half circle (that is, 180 degrees).

  9. Transcendental function - Wikipedia

    en.wikipedia.org/wiki/Transcendental_function

    The even and odd terms of this series provide sums denoting cosh(x) and sinh(x), so that = ⁡ + ⁡. These transcendental hyperbolic functions can be converted into circular functions sine and cosine by introducing (−1) k into the series, resulting in alternating series.