Search results
Results from the WOW.Com Content Network
In image processing, a kernel, convolution matrix, or mask is a small matrix used for blurring, sharpening, embossing, edge detection, and more. This is accomplished by doing a convolution between the kernel and an image. Or more simply, when each pixel in the output image is a function of the nearby pixels (including itself) in the input image ...
He defined the operators as neighborhood masks (i.e. correlation kernels), and therefore are mirrored from what described here as convolution kernels. He also assumed the vertical axis increasing upwards instead of downwards as is common in image processing nowadays, and hence the vertical kernel is flipped.
A major drawback to application of the algorithm is an inherent reduction in overall image contrast produced by the operation. [1] When utilized for image enhancement, the difference of Gaussians algorithm is typically applied when the size ratio of kernel (2) to kernel (1) is 4:1 or 5:1.
In digital image processing convolutional filtering plays an important role in many important algorithms in edge detection and related processes (see Kernel (image processing)) In optics, an out-of-focus photograph is a convolution of the sharp image with a lens function. The photographic term for this is bokeh. In image processing applications ...
A special type of scale-space representation is provided by the Gaussian scale space, where the image data in N dimensions is subjected to smoothing by Gaussian convolution. Most of the theory for Gaussian scale space deals with continuous images, whereas one when implementing this theory will have to face the fact that most measurement data ...
In image processing, a Gaussian blur (also known as Gaussian smoothing) is the result of blurring an image by a Gaussian function (named after mathematician and scientist Carl Friedrich Gauss). It is a widely used effect in graphics software, typically to reduce image noise and reduce detail.
A non-trivial way to mix the latent functions is by convolving a base process with a smoothing kernel. If the base process is a Gaussian process, the convolved process is Gaussian as well. We can therefore exploit convolutions to construct covariance functions. [20] This method of producing non-separable kernels is known as process convolution.
An example of an image blurred using a box blur. A box blur (also known as a box linear filter) is a spatial domain linear filter in which each pixel in the resulting image has a value equal to the average value of its neighboring pixels in the input image. It is a form of low-pass ("blurring") filter.