Search results
Results from the WOW.Com Content Network
In vector calculus, Green's theorem relates a line integral around a simple closed curve C to a double integral over the plane region D (surface in ) bounded by C. It is the two-dimensional special case of Stokes' theorem (surface in ). In one dimension, it is equivalent to the fundamental theorem of calculus.
Poisson's electrical and magnetical investigations were generalized and extended in 1828 by George Green. Green's treatment is based on the properties of the function already used by Lagrange, Laplace, and Poisson, which represents the sum of all the electric or magnetic charges in the field, divided by their respective distances from some given point: to this function Green gave the name ...
In particular, the fundamental theorem of calculus is the special case where the manifold is a line segment, Green’s theorem and Stokes' theorem are the cases of a surface in or , and the divergence theorem is the case of a volume in . [2] Hence, the theorem is sometimes referred to as the fundamental theorem of multivariate calculus.
The rest of the text covers topics such as continuous functions, differentiation, the Riemann–Stieltjes integral, sequences and series of functions (in particular uniform convergence), and outlines examples such as power series, the exponential and logarithmic functions, the fundamental theorem of algebra, and Fourier series.
Proofs from THE BOOK is a book of mathematical proofs by Martin Aigner and Günter M. Ziegler. The book is dedicated to the mathematician Paul Erdős, who often referred to "The Book" in which God keeps the most elegant proof of each mathematical theorem. During a lecture in 1985, Erdős said, "You don't have to believe in God, but you should ...
Download as PDF; Printable version; In other projects ... In mathematics, Green formula may refer to: Green's theorem in integral calculus; Green's identities in ...
In mathematics, a Green's function (or Green function) is the impulse response of an inhomogeneous linear differential operator defined on a domain with specified initial conditions or boundary conditions. This means that if is a linear differential operator, then
Great orthogonality theorem (group theory) Green–Tao theorem (number theory) Green's theorem (vector calculus) Grinberg's theorem (graph theory) Gromov's compactness theorem (Riemannian geometry) Gromov's compactness theorem (symplectic topology) Gromov's theorem on groups of polynomial growth (geometric group theory)