Search results
Results from the WOW.Com Content Network
Quantifier elimination is a concept of simplification used in mathematical logic, model theory, and theoretical computer science. Informally, a quantified statement " ∃ x {\displaystyle \exists x} such that … {\displaystyle \ldots } " can be viewed as a question "When is there an x {\displaystyle x} such that … {\displaystyle \ldots ...
It implies that quantifier elimination is possible over the reals, that is that every formula constructed from polynomial equations and inequalities by logical connectives ∨ (or), ∧ (and), ¬ (not) and quantifiers ∀ (for all), ∃ (exists) is equivalent to a similar formula without quantifiers.
In computer science and mathematical logic, satisfiability modulo theories (SMT) is the problem of determining whether a mathematical formula is satisfiable.It generalizes the Boolean satisfiability problem (SAT) to more complex formulas involving real numbers, integers, and/or various data structures such as lists, arrays, bit vectors, and strings.
Quantifier elimination is a term used in mathematical logic to explain that, in some theories, every formula is equivalent to a formula without quantifier. This is the case of the theory of polynomials over an algebraically closed field , where elimination theory may be viewed as the theory of the methods to make quantifier elimination ...
Quantifier elimination is a concept of simplification used in mathematical logic, model theory, and theoretical computer science. Informally, a quantified statement " ∃ x {\displaystyle \exists x} such that … {\displaystyle \ldots } " can be viewed as a question "When is there an x {\displaystyle x} such that … {\displaystyle \ldots ...
Query optimization is a feature of many relational database management systems and other databases such as NoSQL and graph databases.The query optimizer attempts to determine the most efficient way to execute a given query by considering the possible query plans.
the universal quantifier ∀ and the existential quantifier ∃; A sequence of these symbols forms a sentence that belongs to the first-order theory of the reals if it is grammatically well formed, all its variables are properly quantified, and (when interpreted as a mathematical statement about the real numbers) it is a true statement.
have quantifier elimination; eliminate imaginaries; be finitely axiomatizable; be decidable: There is an algorithm to decide which statements are provable; be recursively axiomatizable; be model complete or sub-model complete; be κ-categorical: All models of cardinality κ are isomorphic; be stable or unstable;