enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Vascular resistance - Wikipedia

    en.wikipedia.org/wiki/Vascular_resistance

    The major determinant of vascular resistance is small arteriolar (known as resistance arterioles) tone. These vessels are from 450 μm down to 100 μm in diameter (as a comparison, the diameter of a capillary is about 5 to 10 μm). Another determinant of vascular resistance is the pre-capillary arterioles. These arterioles are less than 100 μm ...

  3. Hemodynamics - Wikipedia

    en.wikipedia.org/wiki/Hemodynamics

    The pressure drop of the arterioles is the product of flow rate and resistance: ∆P=Q xresistance. The high resistance observed in the arterioles, which factor largely in the ∆P is a result of a smaller radius of about 30 μm. [24] The smaller the radius of a tube, the larger the resistance to fluid flow.

  4. Venous return - Wikipedia

    en.wikipedia.org/wiki/Venous_return

    Note that, for cardiac function curve, "central venous pressure" is the independent variable and "systemic flow" is the dependent variable; for vascular function curve, the opposite is true. Venous return curves showing the normal curve when the mean systemic filling pressure (Psf) is 7 mm Hg and the effect of altering the Psf to 3.5, 7, or 14 ...

  5. Vasodilation - Wikipedia

    en.wikipedia.org/wiki/Vasodilation

    Vascular resistance is the amount of force circulating blood must overcome in order to allow perfusion of body tissues. Narrow vessels create more vascular resistance, while dilated vessels decrease vascular resistance. Vasodilation acts to increase cardiac output by decreasing afterload, −one of the four determinants of cardiac output. [4]

  6. Blood vessel - Wikipedia

    en.wikipedia.org/wiki/Blood_vessel

    Vascular resistance occurs when the vessels away from the heart oppose the flow of blood. Resistance is an accumulation of three different factors: blood viscosity, blood vessel length and vessel radius. [30] Blood viscosity is the thickness of the blood and its resistance to flow as a result of the different components of the blood.

  7. Cardiac function curve - Wikipedia

    en.wikipedia.org/wiki/Cardiac_function_curve

    Note that, for cardiac function curve, "central venous pressure" is the independent variable and "systemic flow" is the dependent variable; for vascular function curve, the opposite is true. It shows a steep relationship at relatively low filling pressures and a plateau, where further stretch is not possible and so increases in pressure have ...

  8. Hemorheology - Wikipedia

    en.wikipedia.org/wiki/Hemorheology

    Blood viscosity is a measure of the resistance of blood to flow. It can also be described as the thickness and stickiness of blood. This biophysical property makes it a critical determinant of friction against the vessel walls, the rate of venous return, the work required for the heart to pump blood, and how much oxygen is transported to tissues and organs.

  9. Local blood flow regulation - Wikipedia

    en.wikipedia.org/wiki/Local_blood_flow_regulation

    In response to the blood flow interruption, a temporary compensatory vasodilation occurs as soon as blood flow has resumed, before returning to normal. This response occurs because vasodilatory substances, like adenosine, are released in response to the blood flow interruption, meaning that when blood flow resumes it occurs in a wider blood ...