enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Gaussian elimination - Wikipedia

    en.wikipedia.org/wiki/Gaussian_elimination

    A variant of Gaussian elimination called Gauss–Jordan elimination can be used for finding the inverse of a matrix, if it exists. If A is an n × n square matrix, then one can use row reduction to compute its inverse matrix, if it exists. First, the n × n identity matrix is augmented to the right of A, forming an n × 2n block matrix [A | I].

  3. Invertible matrix - Wikipedia

    en.wikipedia.org/wiki/Invertible_matrix

    Gaussian elimination is a useful and easy way to compute the inverse of a matrix. To compute a matrix inverse using this method, an augmented matrix is first created with the left side being the matrix to invert and the right side being the identity matrix. Then, Gaussian elimination is used to convert the left side into the identity matrix ...

  4. LU decomposition - Wikipedia

    en.wikipedia.org/wiki/LU_decomposition

    Thus the name Gaussian elimination is only a convenient abbreviation of a complex history. The Polish astronomer Tadeusz Banachiewicz introduced the LU decomposition in 1938. [ 4 ] To quote: "It appears that Gauss and Doolittle applied the method [of elimination] only to symmetric equations.

  5. Row echelon form - Wikipedia

    en.wikipedia.org/wiki/Row_echelon_form

    The reduced row echelon form of a matrix is unique and does not depend on the sequence of elementary row operations used to obtain it. The variant of Gaussian elimination that transforms a matrix to reduced row echelon form is sometimes called Gauss–Jordan elimination. A matrix is in column echelon form if its transpose is in row echelon form.

  6. Bareiss algorithm - Wikipedia

    en.wikipedia.org/wiki/Bareiss_algorithm

    Gaussian elimination has O(n 3) complexity, but introduces division, which results in round-off errors when implemented using floating point numbers. Round-off errors can be avoided if all the numbers are kept as integer fractions instead of floating point. But then the size of each element grows in size exponentially with the number of rows.

  7. Elementary matrix - Wikipedia

    en.wikipedia.org/wiki/Elementary_matrix

    In mathematics, an elementary matrix is a square matrix obtained from the application of a single elementary row operation to the identity matrix.The elementary matrices generate the general linear group GL n (F) when F is a field.

  8. Tridiagonal matrix algorithm - Wikipedia

    en.wikipedia.org/wiki/Tridiagonal_matrix_algorithm

    Simplified forms of Gaussian elimination have been developed for these situations. [6] The textbook Numerical Mathematics by Alfio Quarteroni, Sacco and Saleri, lists a modified version of the algorithm which avoids some of the divisions (using instead multiplications), which is beneficial on some computer architectures.

  9. Pivot element - Wikipedia

    en.wikipedia.org/wiki/Pivot_element

    This system has the exact solution of x 1 = 10.00 and x 2 = 1.000, but when the elimination algorithm and backwards substitution are performed using four-digit arithmetic, the small value of a 11 causes small round-off errors to be propagated. The algorithm without pivoting yields the approximation of x 1 ≈ 9873.3 and x 2 ≈ 4.