Search results
Results from the WOW.Com Content Network
C Grade Nichrome is consistently silvery in colour, is corrosion-resistant, has a high melting point of about 1,400 °C (2,550 °F), and has an electrical resistivity of around 1.12 μΩ·m, which is around 66 times higher resistivity than copper of 16.78 nΩ·m. [3]
In Engineering Electromagnetics, Hayt points out that in a power station a busbar for alternating current at 60 Hz with a radius larger than one-third of an inch (8 mm) is a waste of copper, [20] and in practice bus bars for heavy AC current are rarely more than half an inch (12 mm) thick except for mechanical reasons.
Nichrome, a non-magnetic 80/20 alloy of nickel and chromium, is the most common resistance wire for heating purposes because it has a high resistivity and resistance to oxidation at high temperatures, up to 1,400 °C (2,550 °F). When used as a heating element, resistance wire is usually wound into coils.
A heating element is a device used for conversion of electric energy into heat, consisting of a heating resistor and accessories. [1] Heat is generated by the passage of electric current through a resistor through a process known as Joule heating. Heating elements are used in household appliances, industrial equipment, and scientific ...
Electrical resistivity: 0.706 μΩ m Mechanical; Elongation at break <44% Izod impact strength: 108 J m −1: Modulus of elasticity: 186 GPa Tensile strength: 620–780 MPa Physical; Density: 8.5 g cm −3: Melting point: 1420 °C Thermal Coefficient of thermal expansion: 12.8×10 −6 K −1 at 20–1000 °C Maximum use temperature in air 1100 ...
A bridgewire or bridge wire, also known as a hot bridge wire (HBW), is a relatively thin resistance wire used to set off a pyrotechnic composition serving as pyrotechnic initiator. By passing of electric current it is heated to a high temperature that starts the exothermic chemical reaction of the attached composition.
J. H. Neher and M. H. McGrath were two electrical engineers who wrote a paper in 1957 about how to calculate the capacity of current (ampacity) of cables. [1] The paper described two-dimensional highly symmetric simplified calculations which have formed the basis for many cable application guidelines and regulations.
For example, for three structural isomers with molecular formula C 5 H 12 the melting point increases in the series isopentane −160 °C (113 K) n-pentane −129.8 °C (143 K) and neopentane −16.4 °C (256.8 K). [15] Likewise in xylenes and also dichlorobenzenes the melting point increases in the order meta, ortho and then para.