enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Bohr model - Wikipedia

    en.wikipedia.org/wiki/Bohr_model

    In atomic physics, the Bohr model or Rutherford–Bohr model was the first successful model of the atom. Developed from 1911 to 1918 by Niels Bohr and building on Ernest Rutherford 's nuclear model , it supplanted the plum pudding model of J J Thomson only to be replaced by the quantum atomic model in the 1920s.

  3. Bohr model of the chemical bond - Wikipedia

    en.wikipedia.org/wiki/Bohr_model_of_the_chemical...

    The Bohr model of the chemical bond took into account the Coulomb repulsion - the electrons in the ring are at the maximum distance from each other. [2] Thus, according to this model, the methane molecule is a regular tetrahedron, in which center the carbon nucleus locates, and in the corners - the nucleus of hydrogen. The chemical bond between ...

  4. Rutherford model - Wikipedia

    en.wikipedia.org/wiki/Rutherford_model

    The Rutherford model served to concentrate a great deal of the atom's charge and mass to a very small core, but did not attribute any structure to the remaining electrons and remaining atomic mass. It did mention the atomic model of Hantaro Nagaoka , in which the electrons are arranged in one or more rings, with the specific metaphorical ...

  5. History of atomic theory - Wikipedia

    en.wikipedia.org/wiki/History_of_atomic_theory

    Rutherford defined this position as being the element's atomic number. [75] [76] [77] In 1913, Henry Moseley measured the X-ray emissions of all the elements on the periodic table and found that the frequency of the X-ray emissions was a mathematical function of the element's atomic number and the charge of a hydrogen nucleus (see Moseley's law).

  6. Periodic table - Wikipedia

    en.wikipedia.org/wiki/Periodic_table

    The first periodic table to become generally accepted was that of the Russian chemist Dmitri Mendeleev in 1869; he formulated the periodic law as a dependence of chemical properties on atomic mass. As not all elements were then known, there were gaps in his periodic table, and Mendeleev successfully used the periodic law to predict some ...

  7. Atomic orbital - Wikipedia

    en.wikipedia.org/wiki/Atomic_orbital

    In the Bohr model, an n = 1 electron has a velocity given by =, where Z is the atomic number, is the fine-structure constant, and c is the speed of light. In non-relativistic quantum mechanics, therefore, any atom with an atomic number greater than 137 would require its 1s electrons to be traveling faster than the speed of light.

  8. AOL Mail

    mail.aol.com

    Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!

  9. Electron configuration - Wikipedia

    en.wikipedia.org/wiki/Electron_configuration

    In atomic physics and quantum chemistry, the electron configuration is the distribution of electrons of an atom or molecule (or other physical structure) in atomic or molecular orbitals. [1] For example, the electron configuration of the neon atom is 1s 2 2s 2 2p 6 , meaning that the 1s, 2s, and 2p subshells are occupied by two, two, and six ...