Search results
Results from the WOW.Com Content Network
An electron transport chain (ETC[1]) is a series of protein complexes and other molecules which transfer electrons from electron donors to electron acceptors via redox reactions (both reduction and oxidation occurring simultaneously) and couples this electron transfer with the transfer of protons (H + ions) across a membrane.
The electron transport chain in the mitochondrion is the site of oxidative phosphorylation in eukaryotes. The NADH and succinate generated in the citric acid cycle are oxidized, providing energy to power ATP synthase.
The electron transport chain in the cell is the site of oxidative phosphorylation. The NADH and succinate generated in the citric acid cycle are oxidized, releasing the energy of O 2 to power the ATP synthase.
The electron transport chain is a cluster of proteins that transfer electrons through a membrane within mitochondria to form a gradient of protons that drives the creation of adenosine triphosphate (ATP). ATP is used by the cell as the energy for metabolic processes for cellular functions.
The electron transport chain (ETC) is a group of proteins and organic molecules found in the inner membrane of mitochondria. Each chain member transfers electrons in a series of oxidation-reduction (redox) reactions to form a proton gradient that drives ATP synthesis.
An electron transport chain, or ETC, is composed of a group of protein complexes in and around a membrane that help energetically couple a series of exergonic/spontaneous red/ox reactions to the endergonic pumping of protons across the membrane to generate an electrochemical gradient.
The electron transport chain is a system of molecules through which electrons are transferred to generate ATP. It has an important role in both photosynthesis and cellular respiration.
The electron transport chain is the final phase of cellular respiration, producing and storing energy in the form of ATP molecules. The ETC uses products from the metabolism of glucose and the citric acid cycle for redox reactions.
The Electron Transport Chain (ETC) is a series of protein complexes and molecules located in the inner mitochondrial membrane that transfers electrons from electron donors to electron acceptors, facilitating the production of ATP through oxidative phosphorylation.
The electron transport chain (aka ETC) is a process in which the NADH and [FADH 2] produced during glycolysis, β-oxidation, and other catabolic processes are oxidized thus releasing energy in the form of ATP. The mechanism by which ATP is formed in the ETC is called chemiosmotic phosphorolation.