Search results
Results from the WOW.Com Content Network
Take the remainder of the result divided by 10 (i.e. the modulo 10 operation). If the remainder is equal to 0 then use 0 as the check digit, and if not 0 subtract the remainder from 10 to derive the check digit. A GS1 check digit calculator and detailed documentation is online at GS1's website. [5]
Luhn algorithm. The Luhn algorithm or Luhn formula, also known as the " modulus 10" or "mod 10" algorithm, named after its creator, IBM scientist Hans Peter Luhn, is a simple check digit formula used to validate a variety of identification numbers. It is described in US patent 2950048A, granted on 23 August 1960. [1]
GLNs use the standard GS1 Check Digit as the default for all GS1 identifiers unless another check digit method is specified. Per the official GS1 General Specification [4] the check digit is a 'modulo 10 check digit' or Luhn algorithm check digit. GS1 also provides a check digit calculator.
The check digit is an additional digit, used to verify that a barcode has been scanned correctly. It is computed modulo 10, where the weights in the checksum calculation alternate 3 and 1. In particular, since the weights are relatively prime to 10, the EAN-13 system will detect all single digit errors.
Luhn mod. N. algorithm. The Luhn mod N algorithm is an extension to the Luhn algorithm (also known as mod 10 algorithm) that allows it to work with sequences of values in any even-numbered base. This can be useful when a check digit is required to validate an identification string composed of letters, a combination of letters and digits or any ...
The check digit is a weighted modulo-103 checksum. It is calculated by summing the start code 'value' to the products of each symbol's 'value' multiplied by its position's weight in the barcode string. The start symbol and first encoded symbol are in position 1. The sum of the products is then reduced modulo 103.
The Global Trade Item Number (GTIN) is an identifier for trade items, developed by the international organization GS1. [1] Such identifiers are used to look up product information in a database (often by entering the number through a barcode scanner pointed at an actual product) which may belong to a retailer, manufacturer, collector, researcher, or other entity.
Verhoeff had the goal of finding a decimal code—one where the check digit is a single decimal digit—which detected all single-digit errors and all transpositions of adjacent digits. At the time, supposed proofs of the nonexistence [6] of these codes made base-11 codes popular, for example in the ISBN check digit.