Search results
Results from the WOW.Com Content Network
The symbol for torque is typically , the lowercase Greek letter tau. When being referred to as moment of force, it is commonly denoted by M . Just as a linear force is a push or a pull applied to a body, a torque can be thought of as a twist applied to an object with respect to a chosen point; for example, driving a screw uses torque, which is ...
A pound-foot (lb⋅ft), abbreviated from pound-force foot (lbf · ft), is a unit of torque representing one pound of force acting at a perpendicular distance of one foot from a pivot point. [2] Conversely one foot pound-force (ft · lbf) is the moment about an axis that applies one pound-force at a radius of one foot.
The newton-metre or newton-meter (also non-hyphenated, newton metre or newton meter; symbol N⋅m [1] or N m [1]) [a] is the unit of torque (also called moment) in the International System of Units (SI). One newton-metre is equal to the torque resulting from a force of one newton applied perpendicularly to the end of a moment arm that is one ...
The moment of force, or torque, is a first moment: =, or, more generally, .; Similarly, angular momentum is the 1st moment of momentum: =.Momentum itself is not a moment.; The electric dipole moment is also a 1st moment: = for two opposite point charges or () for a distributed charge with charge density ().
Symbol Name Meaning SI unit of measure alpha: alpha particle: angular acceleration: radian per second squared (rad/s 2) fine-structure constant: unitless beta: velocity in terms of the speed of light c: unitless beta particle: gamma: Lorentz factor: unitless photon: gamma ray: shear strain: radian
Greek letters are used in mathematics, science, engineering, and other areas where mathematical notation is used as symbols for constants, special functions, and also conventionally for variables representing certain quantities. In these contexts, the capital letters and the small letters represent distinct and unrelated entities.
is the torque produced divided by armature current. [10] It can be calculated from the motor velocity constant . = = = where is the armature current of the machine (SI unit: ampere).
In 1820, the French engineer A. Duleau derived analytically that the torsion constant of a beam is identical to the second moment of area normal to the section J zz, which has an exact analytic equation, by assuming that a plane section before twisting remains planar after twisting, and a diameter remains a straight line.