Search results
Results from the WOW.Com Content Network
Gravitational time dilation is a form of time dilation, an actual difference of elapsed time between two events, as measured by observers situated at varying distances from a gravitating mass. The lower the gravitational potential (the closer the clock is to the source of gravitation), the slower time passes, speeding up as the gravitational ...
Unlike a regular distance-time graph, the distance is displayed on the horizontal axis and time on the vertical axis. Additionally, the time and space units of measurement are chosen in such a way that an object moving at the speed of light is depicted as following a 45° angle to the diagram's axes.
The faster the relative velocity, the greater the time dilation between them, with time slowing to a stop as one clock approaches the speed of light (299,792,458 m/s). In theory, time dilation would make it possible for passengers in a fast-moving vehicle to advance into the future in a short period of their own time.
This gravitational frequency shift corresponds to a gravitational time dilation: Since the "higher" observer measures the same light wave to have a lower frequency than the "lower" observer, time must be passing faster for the higher observer. Thus, time runs more slowly for observers the lower they are in a gravitational field.
Assuming that the equivalence principle holds, [63] gravity influences the passage of time. Light sent down into a gravity well is blueshifted, whereas light sent in the opposite direction (i.e., climbing out of the gravity well) is redshifted; collectively, these two effects are known as the gravitational frequency shift. More generally ...
At the time he only considered the time-dilating manifestation of gravity, which is the dominating contribution at non-relativistic speeds; however relativistic objects travel through space a comparable amount as they do though time, so purely spatial curvature becomes just as important.
Any theory of gravity will predict gravitational time dilation if it respects the principle of equivalence. [ 6 ] : 16 This includes Newtonian gravitation. A standard demonstration in general relativity is to show how, in the " Newtonian limit " (i.e. the particles are moving slowly, the gravitational field is weak, and the field is static ...
t is the time between these same two events, but as measured in the stationary reference frame; v is the speed of the moving reference frame relative to the stationary one; c is the speed of light. Moving objects therefore are said to show a slower passage of time. This is known as time dilation.