Search results
Results from the WOW.Com Content Network
Palisade cell, or palisade mesophyll cell are plant cells located inside the mesophyll of most green leaves. They are vertically elongated and are stacked side by side, in contrast to the irregular and loosely arranged spongy mesophyll cells beneath them. Palisade cells are responsible for carrying out the majority of the photosynthesis in a ...
In most leaves, the primary photosynthetic tissue is the palisade mesophyll and is located on the upper side of the blade or lamina of the leaf [1] but in some species, including the mature foliage of Eucalyptus, [5] palisade mesophyll is present on both sides and the leaves are said to be isobilateral.
In leaves, they form two layers of mesophyll cells immediately beneath the epidermis of the leaf, that are responsible for photosynthesis and the exchange of gases. [2] These layers are called the palisade parenchyma and spongy mesophyll. Palisade parenchyma cells can be either cuboidal or elongated.
Original - The fine scale structure of a leaf showing the major tissues; the upper and lower epidermis (and associated cuticles), the palisade and spongy mesophyll and the guard cells of the stoma. Vascular tissue (veins) is not shown. Key plant cell organelles (the cell wall, nucleus, chloroplasts, vacuole and cytoplasm) are also shown. Reason
Spongy tissue is a type of tissue found both in plants and animals.. In plants, it is part of the mesophyll, where it forms a layer next to the palisade cells in the leaf.The spongy mesophyll's function is to allow for the interchange of gases (CO 2) that are needed for photosynthesis.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
Loosely-arranged mesophyll cells lie between the bundle sheath and the leaf surface. The Calvin cycle is confined to the chloroplasts of these bundle sheath cells in C 4 plants. C 2 plants also use a variation of this structure. [1]
The resulting Pyruvate is transaminated to alanine, diffusing to the mesophyll. Alanine is finally transaminated to pyruvate (PYR) which can be regenerated to PEP by PPDK in the mesophyll chloroplasts. This cycle bypasses the reaction of malate dehydrogenase in the mesophyll and therefore does not transfer reducing equivalents to the bundle sheath.