Search results
Results from the WOW.Com Content Network
Two limiting cases of X-ray crystallography—"small-molecule" (which includes continuous inorganic solids) and "macromolecular" crystallography—are often used. Small-molecule crystallography typically involves crystals with fewer than 100 atoms in their asymmetric unit; such crystal structures are usually so well resolved that the atoms can ...
This is an accepted version of this page This is the latest accepted revision, reviewed on 15 November 2024. British X-ray crystallographer (1920–1958) This article is about the chemist. For the Mars rover named after her, see Rosalind Franklin (rover). Rosalind Franklin Franklin with a microscope in 1955 Born Rosalind Elsie Franklin (1920-07-25) 25 July 1920 Notting Hill, London, England ...
Rosalind Franklin joined King's College London in January 1951 to work on the crystallography of DNA. By the end of that year, she established two important facts: one is that phosphate groups, which are the molecular backbone for the nucleotide chains, lie on the outside (it was a general consensus at the time that they were at the inside); and the other is that DNA exists in two forms, a ...
Professor Schmidt is recognized as one of the founders of modern organic solid-state chemistry. At the Weizmann Institute, the work of his group centered around the development of X-ray crystallographic methods for the determination of molecular structures in order to understand the properties and reactivity of organic solids.
Crick was in the right place, in the right frame of mind, at the right time (1949), to join Max Perutz's project at the University of Cambridge, and he began to work on the X-ray crystallography of proteins. [30] X-ray crystallography theoretically offered the opportunity to reveal the molecular structure of large molecules like proteins and ...
Dorothy Mary Crowfoot Hodgkin OM FRS HonFRSC [9] [10] (née Crowfoot; 12 May 1910 – 29 July 1994) was a Nobel Prize-winning English chemist who advanced the technique of X-ray crystallography to determine the structure of biomolecules, which became essential for structural biology.
The double-helix model of DNA structure was first published in the journal Nature by James Watson and Francis Crick in 1953, [6] (X,Y,Z coordinates in 1954 [7]) based on the work of Rosalind Franklin and her student Raymond Gosling, who took the crucial X-ray diffraction image of DNA labeled as "Photo 51", [8] [9] and Maurice Wilkins, Alexander Stokes, and Herbert Wilson, [10] and base-pairing ...
Pauling's approach combined methods and results from X-ray crystallography, molecular model building, and quantum chemistry. His discoveries inspired the work of Rosalind Franklin , James Watson , Francis Crick , and Maurice Wilkins on the structure of DNA , which in turn made it possible for geneticists to crack the DNA code of all organisms.