Search results
Results from the WOW.Com Content Network
The prediction interval is conventionally written as: [, +]. For example, to calculate the 95% prediction interval for a normal distribution with a mean (μ) of 5 and a standard deviation (σ) of 1, then z is approximately 2. Therefore, the lower limit of the prediction interval is approximately 5 ‒ (2⋅1) = 3, and the upper limit is ...
The blue intervals contain the population mean, and the red ones do not. This probability distribution highlights some different confidence intervals. Informally, in frequentist statistics, a confidence interval (CI) is an interval which is expected to typically contain the parameter being estimated.
The Clopper–Pearson interval is an early and very common method for calculating binomial confidence intervals. [11] This is often called an 'exact' method, as it attains the nominal coverage level in an exact sense, meaning that the coverage level is never less than the nominal . [2]
In statistics, interval estimation is the use of sample data to estimate an interval of possible values of a parameter of interest. This is in contrast to point estimation, which gives a single value. [1] The most prevalent forms of interval estimation are confidence intervals (a frequentist method) and credible intervals (a Bayesian method). [2]
An interval is said to be bounded, if it is both left- and right-bounded; and is said to be unbounded otherwise. Intervals that are bounded at only one end are said to be half-bounded. The empty set is bounded, and the set of all reals is the only interval that is unbounded at both ends. Bounded intervals are also commonly known as finite ...
The smallest credible interval (SCI), sometimes also called the highest density interval. This interval will necessarily include the median whenever . When the distribution is unimodal, this interval will include the mode. The smallest credible region (SCR), sometimes also called the highest density region. For a multimodal distribution, this ...
Confidence bands can be constructed around estimates of the empirical distribution function.Simple theory allows the construction of point-wise confidence intervals, but it is also possible to construct a simultaneous confidence band for the cumulative distribution function as a whole by inverting the Kolmogorov-Smirnov test, or by using non-parametric likelihood methods.
The main objective of interval arithmetic is to provide a simple way of calculating upper and lower bounds of a function's range in one or more variables. These endpoints are not necessarily the true supremum or infimum of a range since the precise calculation of those values can be difficult or impossible; the bounds only need to contain the function's range as a subset.