Search results
Results from the WOW.Com Content Network
Atmospheric thermodynamics is the study of heat-to-work transformations (and their reverse) that take place in the Earth's atmosphere and manifest as weather or climate. . Atmospheric thermodynamics use the laws of classical thermodynamics, to describe and explain such phenomena as the properties of moist air, the formation of clouds, atmospheric convection, boundary layer meteorology, and ...
Atmospheric temperature is a measure of temperature at different levels of the Earth's atmosphere. It is governed by many factors, including incoming solar radiation , humidity , and altitude . The abbreviation MAAT is often used for Mean Annual Air Temperature of a geographical location.
The dry-bulb temperature (DBT) is the temperature of air measured by a thermometer freely exposed to the air, but shielded from radiation. [1] The dry-bulb temperature is the temperature that is usually thought of as air temperature, and it is the true thermodynamic temperature.
Furthermore, in atmospheric thermodynamics, a diabatic process is one in which heat is exchanged. [17] An adiabatic process is the opposite – a process in which no heat is exchanged. Conceptual significance in thermodynamic theory
In atmospheric science, equivalent temperature is the temperature of air in a parcel from which all the water vapor has been extracted by an adiabatic process. Air contains water vapor that has been evaporated into it from liquid sources (lakes, sea, etc...). The energy needed to do that has been taken from the air.
Thermodynamics is the branch of physics that studies heat, work, and temperature and their relation to energy, entropy, and the physical properties of matter and radiation. ...
Enthalpy (/ ˈ ɛ n θ əl p i / ⓘ) is the sum of a thermodynamic system's internal energy and the product of its pressure and volume. [1] It is a state function in thermodynamics used in many measurements in chemical, biological, and physical systems at a constant external pressure, which is conveniently provided by the large ambient atmosphere.
The molar volume of gases around STP and at atmospheric pressure can be calculated with an accuracy that is usually sufficient by using the ideal gas law. The molar volume of any ideal gas may be calculated at various standard reference conditions as shown below: V m = 8.3145 × 273.15 / 101.325 = 22.414 dm 3 /mol at 0 °C and 101.325 kPa