Search results
Results from the WOW.Com Content Network
Every terminating decimal representation can be written as a decimal fraction, a fraction whose denominator is a power of 10 (e.g. 1.585 = 1585 / 1000 ); it may also be written as a ratio of the form k / 2 n ·5 m (e.g. 1.585 = 317 / 2 3 ·5 2 ).
For example, 1 / 4 , 5 / 6 , and −101 / 100 are all irreducible fractions. On the other hand, 2 / 4 is reducible since it is equal in value to 1 / 2 , and the numerator of 1 / 2 is less than the numerator of 2 / 4 . A fraction that is reducible can be reduced by dividing both the numerator ...
Also the converse is true: The decimal expansion of a rational number is either finite, or endlessly repeating. Finite decimal representations can also be seen as a special case of infinite repeating decimal representations. For example, 36 ⁄ 25 = 1.44 = 1.4400000...; the endlessly repeated sequence is the one-digit sequence "0".
The correct result would be 1.2 × 5.6 = 6.72. For a more complicated example, suppose that the two numbers 1.2 and 5.6 are represented in 32-bit fixed point format with 30 and 20 fraction bits, respectively. Scaling by 2 30 and 2 20 gives 1 288 490 188.8 and 5 872 025.6, that round to 1 288 490 189 and 5 872 026, respectively. Both numbers ...
In this formalism, the identities 1 = 0.999... and 1 = 1.000... reflect, respectively, the fact that 1 lies in both [0, 1]. and [1, 2], so one can choose either subinterval when finding its digits. To ensure that this notation does not abuse the "=" sign, one needs a way to reconstruct a unique real number for each decimal.
For the folded general continued fractions of both expressions, the rate convergence μ = (3 − √ 8) 2 = 17 − √ 288 ≈ 0.02943725, hence 1 / μ = (3 + √ 8) 2 = 17 + √ 288 ≈ 33.97056, whose common logarithm is 1.531... ≈ 26 / 17 > 3 / 2 , thus adding at least three digits per two terms. This is because the ...
This last non-simple continued fraction (sequence A110185 in the OEIS), equivalent to = [;,,,,,...], has a quicker convergence rate compared to Euler's continued fraction formula [clarification needed] and is a special case of a general formula for the exponential function:
The duodecimal system, also known as base twelve or dozenal, is a positional numeral system using twelve as its base.In duodecimal, the number twelve is denoted "10", meaning 1 twelve and 0 units; in the decimal system, this number is instead written as "12" meaning 1 ten and 2 units, and the string "10" means ten.