Search results
Results from the WOW.Com Content Network
Note the decrease in ΔG ‡ activation for the polar-solvent reaction conditions. This arises from the fact that polar solvents stabilize the formation of the carbocation intermediate to a greater extent than the non-polar-solvent conditions. This is apparent in the ΔE a, ΔΔG ‡ activation. On the right is an S N 2 reaction coordinate diagram.
Polar solvents can be used to dissolve inorganic or ionic compounds such as salts. The conductivity of a solution depends on the solvation of its ions. Nonpolar solvents cannot solvate ions, and ions will be found as ion pairs. Hydrogen bonding among solvent and solute molecules depends on the ability of each to accept H-bonds, donate H-bonds ...
Calcium chloride was apparently discovered in the 15th century but wasn't studied properly until the 18th century. [11] It was historically called "fixed sal ammoniac" (Latin: sal ammoniacum fixum [12]) because it was synthesized during the distillation of ammonium chloride with lime and was nonvolatile (while the former appeared to sublime); in more modern times (18th-19th cc.) it was called ...
In chemical reactions the use of polar protic solvents favors the S N 1 reaction mechanism, while polar aprotic solvents favor the S N 2 reaction mechanism. These polar solvents are capable of forming hydrogen bonds with water to dissolve in water whereas non-polar solvents are not capable of strong hydrogen bonds.
Polar liquids have a tendency to be more viscous than nonpolar liquids. [citation needed] For example, nonpolar hexane is much less viscous than polar water. However, molecule size is a much stronger factor on viscosity than polarity, where compounds with larger molecules are more viscous than compounds with smaller molecules.
The integral heat of dissolution is defined as a process of obtaining a certain amount of solution with a final concentration. The enthalpy change in this process, normalized by the mole number of solute, is evaluated as the molar integral heat of dissolution. Mathematically, the molar integral heat of dissolution is denoted as:
Again, the strength of an electrolyte is defined as the percentage of solute that is ions, rather than molecules. The higher the percentage, the stronger the electrolyte. Thus, even if a substance is not very soluble, but does dissociate completely into ions, the substance is defined as a strong electrolyte.
Solvent exchange is generally slower for trivalent than for divalent ions, as the higher electrical charge on the cation makes for stronger M-OH 2 bonds and, in consequence, higher activation energy for the dissociative reaction step, [M(H 2 O) n] 3+ → [M(H 2 O) n-1] 3+ + H 2 O. The values in the table show that this is due to both activation ...